Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Biochimie ; 225: 89-98, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38754620

ABSTRACT

The TMPRSS2 protease plays a key role in the entry of the SARS-CoV-2 into cells. The TMPRSS2 gene is highly polymorphic in humans, and some polymorphisms may affect the susceptibility to COVID-19 or disease severity. rs75603675 (c.23G > T) is a missense variant that causes the replacement of glycine with valine at position 8 (p.G8V) in the TMPRSS2 isoform 1. According to GnomAD v4.0.0 database, the allele frequency of the rs75603675 on a global scale is 38.10 %, and range from 0.92 % in East Asian to 40.77 % in non-Finnish European (NFE) population. We analyzed the occurrence of the rs75603675 in two cohorts of patients, the first with severe/critical COVID-19 enrolled in a French hospital (42 patients), and the second with predominantly asymptomatic/pauci-symptomatic/mild COVID-19 enrolled in an Italian hospital (69 patients). We found that the TMPRSS2-c.23T minor allele frequency was similar in the two cohorts, 46.43 % and 46.38 %, respectively, and higher than the frequency in the NFE population (40.77 %). Chi-square test provided significant results (p < 0.05) when the genotype data (TMPRSS2-c.23T/c.23T homozygotes + TMPRSS2-c.23G/c.23T heterozygotes vs. TMPRSS2-c.23G/c.23G homozygotes) of the two patient groups were pooled and compared to the expected data for the NFE population, suggesting a possible pathogenetic mechanism of the p.G8V substitution. We explored the possible effects of the p.G8V substitution and found that the N-terminal region of the TMPRSS2 isoform 1 contains a signal for clathrin/AP-2-dependent endocytosis. In silico analysis predicted that the p.G8V substitution may increase the accessibility to the endocytic signal, which could help SARS-CoV-2 enter cells.

2.
Noncoding RNA ; 10(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38804361

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive neoplasia, characterized by early metastasis, low diagnostic rates at early stages, resistance to drugs, and poor prognosis. There is an urgent need to better characterize this disease in order to identify efficient diagnostic/prognostic biomarkers. Since microRNAs (miRNAs) contribute to oncogenesis and metastasis formation in PDAC, they are considered potential candidates for fulfilling this task. In this work, the levels of two miRNA subsets (involved in chemoresistance or with oncogenic/tumor suppressing functions) were investigated in a panel of PDAC cell lines and liquid biopsies of a small cohort of patients. We used RT-qPCR and droplet digital PCR (ddPCR) to measure the amounts of cellular- and vesicle-associated, and circulating miRNAs. We found that both PDAC cell lines, also after gemcitabine treatment, and patients showed low amounts of cellular-and vesicle-associated miR-155-5p, compared to controls. Interestingly, we did not find any differences when we analyzed circulating miR-155-5p. Furthermore, vesicle-related miR-27a-3p increased in cancer patients compared to the controls, while circulating let-7a-5p, miR-221-3p, miR-23b-3p and miR-193a-3p presented as dysregulated in patients compared to healthy individuals. Our results highlight the potential clinical significance of these analyzed miRNAs as non-invasive diagnostic molecular tools to characterize PDAC.

3.
Int J Biol Macromol ; 271(Pt 1): 132550, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782326

ABSTRACT

Cyclic olefin copolymer (COC) has emerged as an interesting biocompatible material for Organ-on-a-Chip (OoC) devices monitoring growth, viability, and metabolism of cells. Despite ISO 10993 approval, systematic investigation of bacteria grown onto COC is a still not documented issue. This study discusses biofilm formations of the canonical wild type BB120 Vibrio campbellii strain on a native COC substrate and addresses the impact of the physico-chemical properties of COC compared to conventional hydroxyapatite (HA) and poly(dimethylsiloxane) (PDMS) surfaces. An interdisciplinary approach combining bacterial colony counting, light microscopy imaging and advanced digital image processing remarks interesting results. First, COC can reduce biomass adhesion with respect to common biopolymers, that is suitable for tuning biofilm formations in the biological and medical areas. Second, remarkably different biofilm morphology (dendritic complex patterns only in the case of COC) was observed among the examined substrates. Third, the observed biofilm morphogenesis was related to the interaction of COC with the conditioning layer of the planktonic biological medium. Fourth, Level Co-occurrence Matrix (CGLM)-based analysis enabled quantitative assessment of the biomass textural fractal development under different coverage conditions. All of this is of key practical relevance in searching innovative biocompatible materials for pharmaceutical, implantable and medical products.


Subject(s)
Bacterial Adhesion , Biocompatible Materials , Biofilms , Vibrio , Biocompatible Materials/chemistry , Biofilms/drug effects , Biofilms/growth & development , Vibrio/drug effects , Vibrio/growth & development , Bacterial Adhesion/drug effects , Cycloparaffins/chemistry , Polymers/chemistry , Durapatite/chemistry , Biomass
4.
Sci Total Environ ; 936: 173423, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38797412

ABSTRACT

Tidally-influenced subterranean settings represent natural geomicrobiological laboratories, relatively unexplored, that facilitate the investigation of new biomineralization processes. The unusual water chemistry of Zinzulùsa Cave and its oligotrophic and aphotic conditions have allowed the development of a unique ecosystem in which complex bacterial activities induce rare biomineralization processes. A diversified microbial community develops on centimeter-thick crusts that form in the submerged part of the cave. The crusts are formed of Ca-phosphate minerals, mostly carbonate-fluoroapatite (francolite), covered by a black crust, few microns in thickness, composed of ferromanganiferous oxides (hematite and vernadite). Diffuse coccoidal and filamentous bacteria and amorphous organic matter are mixed with the minerals. The micromorphologies and comparative 16S rRNA gene-based metabarcoding analyses identify a "core microbiota" also common to other natural environments characterized by FeMn and Ca-phosphate mineralization. The microbiota is characterized by nitrifying, sulfide/sulfur/thiosulfate-oxidizing and sulfate/thiosulfate/sulfur-reducing bacteria. In addition, manganese-oxidizing bacteria include the recently described "Ca. Manganitrophus noduliformans" and an abundance of bacteria belonging to the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) superphylum, as well as Haliangiales (fruiting body-forming bacteria) and Hyphomicrobiales (stalked and budding bacteria) that are known to produce extracellular polymers that trap iron and manganese oxides. 16S rRNA gene metabarcoding analysis showed the presence of bacteria able to utilize many organic P substrates, including Ramlibacter, and SEM images revealed traces of fossilized microorganisms resembling "cable bacteria", which may play a role in Ca-phosphate biomineralization. Overall, the data indicate biomineralization processes induced by microbial metabolic activities for both ferromanganiferous oxide and francolite components of these crusts.


Subject(s)
Biomineralization , Caves , Microbial Consortia , Italy , Caves/microbiology , Bacteria/metabolism , Bacteria/classification , RNA, Ribosomal, 16S , Microbiota
5.
Biology (Basel) ; 12(11)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37998003

ABSTRACT

In recent years, the enormous demand for swabs for clinical use has promoted their relevance and, consequently, brought the environmental issues due to their single use and lack of biodegradability to the attention of the healthcare industry. Swabs consist of a stick that facilitates their easy handling and manoeuvrability even in complex districts and an absorbent tip designed to uptake and release biological samples. In this study, we focused on the fabrication of an innovative biodegradable poly(vinyl alcohol) (PVA) nanofiber swab tip using the electrospinning technique. The innovative swab tip obtained showed comparable uptake and release capacity of protein and bacterial species (Pseudomonas aeruginosa and Staphylococcus aureus) with those of the commercial foam-type swab. In this way, the obtained swab can be attractive and suitable to fit into this panorama due to its low-cost process, easy scalability, and good uptake and release capabilities.

6.
Biology (Basel) ; 12(7)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37508402

ABSTRACT

Currently, numerous research endeavors are dedicated to unraveling the intricate nature of neurodegenerative diseases. These conditions are characterized by the gradual and progressive impairment of specific neuronal systems that exhibit anatomical or physiological connections. In particular, in the last twenty years, remarkable efforts have been made to elucidate neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. However, despite extensive research endeavors, no cure or effective treatment has been discovered thus far. With the emergence of studies shedding light on the contribution of mitochondria to the onset and advancement of mitochondrial neurodegenerative disorders, researchers are now directing their investigations toward the development of therapies. These therapies include molecules designed to protect mitochondria and neurons from the detrimental effects of aging, as well as mutant proteins. Our objective is to discuss and evaluate the recent discovery of three mitochondrial ribosomal proteins linked to Alzheimer's and Parkinson's diseases. These proteins represent an intermediate stage in the pathway connecting damaged genes to the two mitochondrial neurological pathologies. This discovery potentially could open new avenues for the production of medicinal substances with curative potential for the treatment of these diseases.

7.
Front Microbiol ; 14: 1104454, 2023.
Article in English | MEDLINE | ID: mdl-36910221

ABSTRACT

Due to the increased resistance to all available antibiotics and the lack of vaccines, Neisseria gonorrhoeae (the gonococcus) poses an urgent threat. Although the mechanisms of virulence and antibiotic resistance have been largely investigated in this bacterium, very few studies have addressed the stringent response (SR) that in pathogenic bacteria controls the expression of genes involved in host-pathogen interaction and tolerance and persistence toward antibiotics. In this study, the results of the transcriptome analysis of a clinical isolate of N. gonorrhoeae, after induction of the SR by serine hydroxamate, provided us with an accurate list of genes that are transcriptionally modulated during the SR. The list includes genes associated with metabolism, cellular machine functions, host-pathogen interaction, genome plasticity, and antibiotic tolerance and persistence. Moreover, we found that the artificial induction of the SR in N. gonorrhoeae by serine hydroxamate is prevented by thiostrepton, a thiopeptide antibiotic that is known to interact with ribosomal protein L11, thereby inhibiting functions of EF-Tu and EF-G, and binding of pppGpp synthase I (RelA) to ribosome upon entry of uncharged tRNA. We found that N. gonorrhoeae is highly sensitive to thiostrepton under in vitro conditions, and that thiostrepton, in contrast to other antibiotics, does not induce tolerance or persistence. Finally, we observed that thiostrepton attenuated the expression of key genes involved in the host-pathogen interaction. These properties make thiostrepton a good drug candidate for dampening bacterial virulence and preventing antibiotic tolerance and persistence. The ongoing challenge is to increase the bioavailability of thiostrepton through the use of chemistry and nanotechnology.

8.
Int J Mol Sci ; 24(6)2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36982495

ABSTRACT

Biofilms are key bacterial communities in genetic and adaptive resistance to antibiotics as well as disease control strategies. The mature high-coverage biofilm formations of the Vibrio campbellii strains (wild type BB120 and isogenic derivatives JAF633, KM387, and JMH603) are studied here through the unstraightforward digital processing of morphologically complex images without segmentation or the unrealistic simplifications used to artificially simulate low-density formations. The main results concern the specific mutant- and coverage-dependent short-range orientational correlation as well as the coherent development of biofilm growth pathways over the subdomains of the image. These findings are demonstrated to be unthinkable based only on a visual inspection of the samples or on methods such as Voronoi tessellation or correlation analyses. The presented approach is general, relies on measured rather than simulated low-density formations, and could be employed in the development of a highly efficient screening method for drugs or innovative materials.


Subject(s)
Microscopy , Vibrio , Vibrio/metabolism , Biofilms
9.
Antibiotics (Basel) ; 12(3)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36978366

ABSTRACT

Spiramycin is a 16-membered macrolide antibiotic currently used in therapy to treat infections caused by Gram-positive bacteria responsible for respiratory tract infections, and it is also effective against some Gram-negative bacteria and against Toxoplasma spp. In contrast, Pseudomonas aeruginosa, which is one of the pathogens of most concern globally, is intrinsically resistant to spiramycin. In this study we show that spiramycin inhibits the expression of virulence determinants in P. aeruginosa in the absence of any significant effect on bacterial multiplication. In vitro experiments demonstrated that production of pyoverdine and pyocyanin by an environmental strain of P. aeruginosa was markedly reduced in the presence of spiramycin, as were biofilm formation, swarming motility, and rhamnolipid production. Moreover, treatment of P. aeruginosa with spiramycin sensitized the bacterium to H2O2 exposure. The ability of spiramycin to dampen the virulence of the P. aeruginosa strain was confirmed in a Galleria mellonella animal model. The results demonstrated that when G. mellonella larvae were infected with P. aeruginosa, the mortality after 24 h was >90%. In contrast, when the spiramycin was injected together with the bacterium, the mortality dropped to about 50%. Furthermore, marked reduction in transcript levels of the antimicrobial peptides gallerimycin, gloverin and moricin, and lysozyme was found in G. mellonella larvae infected with P. aeruginosa and treated with spiramycin, compared to the larvae infected without spiramycin treatment suggesting an immunomodulatory activity of spiramycin. These results lay the foundation for clinical studies to investigate the possibility of using the spiramycin as an anti-virulence and anti-inflammatory drug for a more effective treatment of P. aeruginosa infections, in combination with other antibiotics.

10.
Cancer Gene Ther ; 30(3): 394-403, 2023 03.
Article in English | MEDLINE | ID: mdl-36460805

ABSTRACT

The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is the most abundant and ubiquitously expressed member of the heterogeneous nuclear ribonucleoproteins family (hnRNPs). hnRNP A1 is an RNA-binding protein associated with complexes active in diverse biological processes such as RNA splicing, transactivation of gene expression, and modulation of protein translation. It is overexpressed in several cancers, where it actively promotes the expression and translation of several key proteins and regulators associated with tumorigenesis and cancer progression. Interesting recent studies have focused on the RNA-binding property of hnRNP A1 and revealed previously under-explored functions of hnRNP A1 in the processing of miRNAs, and loading non-coding RNAs into exosomes. Here, we will report the recent advancements in our knowledge of the role of hnRNP A1 in the biological processes underlying cancer proliferation and growth, with a particular focus on metabolic reprogramming.


Subject(s)
Heterogeneous Nuclear Ribonucleoprotein A1 , Heterogeneous-Nuclear Ribonucleoprotein Group A-B , MicroRNAs , Neoplasms , Humans , Heterogeneous Nuclear Ribonucleoprotein A1/genetics , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/chemistry , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Neoplasms/genetics
11.
Inflammation ; 45(6): 2477-2497, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35732858

ABSTRACT

Winnie, a mouse carrying a missense mutation in the MUC2 mucin gene, is a valuable model for inflammatory bowel disease (IBD) with signs and symptoms that have multiple similarities with those observed in patients with ulcerative colitis. MUC2 mucin is present in Winnie, but is not firmly compacted in a tight inner layer. Indeed, these mice develop chronic intestinal inflammation due to the primary epithelial defect with signs of mucosal damage, including thickening of muscle and mucosal layers, goblet cell loss, increased intestinal permeability, enhanced susceptibility to luminal inflammation-inducing toxins, and alteration of innervation in the distal colon. In this study, we show that the intestinal environment of the Winnie mouse, genetically determined by MUC2 mutation, selects an intestinal microbial community characterized by specific pro-inflammatory, genotoxic, and metabolic features that could imply a direct involvement in the pathogenesis of chronic intestinal inflammation. We report results obtained by using a variety of in vitro approaches for fecal microbiota functional characterization. These approaches include Caco-2 cell cultures and Caco-2/THP-1 cell co-culture models for evaluation of geno-cytotoxic and pro-inflammatory properties using a panel of 43 marker RNAs assayed by RT-qPCR, and cell-based phenotypic testing for metabolic profiling of the intestinal microbial communities by Biolog EcoPlates. While adding a further step towards understanding the etiopathogenetic mechanisms underlying IBD, the results of this study provide a reliable method for phenotyping gut microbial communities, which can complement their structural characterization by providing novel functional information.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Microbiota , Humans , Mice , Animals , Rodentia , Caco-2 Cells , Intestinal Mucosa/metabolism , Colitis/pathology , Inflammation/metabolism , Inflammatory Bowel Diseases/metabolism , Mucins/metabolism , Chronic Disease , DNA Damage , Disease Models, Animal , Mice, Inbred C57BL
12.
J Biomed Sci ; 29(1): 45, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35765029

ABSTRACT

BACKGROUND: In Neisseria meningitidis the HrpA/HrpB two-partner secretion system (TPS) was implicated in diverse functions including meningococcal competition, biofilm formation, adherence to epithelial cells, intracellular survival and vacuolar escape. These diverse functions could be attributed to distinct domains of secreted HrpA. METHODS: A yeast two-hybrid screening, in vitro pull-down assay and immunofluorescence microscopy experiments were used to investigate the interaction between HrpA and the dynein light-chain, Tctex-type 1 (DYNLT1). In silico modeling was used to analyze HrpA structure. Western blot analysis was used to investigate apoptotic and pyroptotic markers. RESULTS: The HrpA carboxy-terminal region acts as a manganese-dependent cell lysin, while the results of a yeast two-hybrid screening demonstrated that the HrpA middle region has the ability to bind the dynein light-chain, Tctex-type 1 (DYNLT1). This interaction was confirmed by in vitro pull-down assay and immunofluorescence microscopy experiments showing co-localization of N. meningitidis with DYNLT1 in infected epithelial cells. In silico modeling revealed that the HrpA-M interface interacting with the DYNLT1 has similarity with capsid proteins of neurotropic viruses that interact with the DYNLT1. Indeed, we found that HrpA plays a key role in infection of and meningococcal trafficking within neuronal cells, and is implicated in the modulation of the balance between apoptosis and pyroptosis. CONCLUSIONS: Our findings revealed that N. meningitidis is able to effectively infect and survive in neuronal cells, and that this ability is dependent on HrpA, which establishes a direct protein-protein interaction with DYNLTI in these cells, suggesting that the HrpA interaction with dynein could be fundamental for N. meningitidis spreading inside the neurons. Moreover, we found that the balance between apoptotic and pyroptotic pathways is heavily affected by HrpA.


Subject(s)
Dyneins , Neisseria meningitidis , Dyneins/chemistry , Dyneins/metabolism , Epithelial Cells/metabolism , Neisseria meningitidis/metabolism , Pyroptosis , Saccharomyces cerevisiae/metabolism
13.
Mitochondrion ; 64: 45-58, 2022 05.
Article in English | MEDLINE | ID: mdl-35218961

ABSTRACT

Mitochondrial diseases are a group of genetic disorders characterized by dysfunctional mitochondria. Within eukaryotic cells, mitochondria contain their own ribosomes, which synthesize small amounts of proteins, all of which are essential for the biogenesis of the oxidative phosphorylation system. The ribosome is an evolutionarily conserved macromolecular machine in nature both from a structural and functional point of view, universally responsible for the synthesis of proteins. Among the diseases afflicting humans, those of ribosomal origin - either cytoplasmic ribosomes (80S) or mitochondrial ribosomes (70S) - are relevant. These are inherited or acquired diseases most commonly caused by either ribosomal protein haploinsufficiency or defects in ribosome biogenesis. Here we review the scientific literature about the recent advances on changes in mitochondrial ribosomal structural and assembly proteins that are implicated in primary mitochondrial diseases and neurodegenerative disorders, and their possible connection with metalloid pollution and toxicity, with a focus on MRPL44, NAM9 (MNA6) and GEP3 (MTG3), whose lack or defect was associated with resistance to tellurite. Finally, we illustrate the suitability of yeast Saccharomyces cerevisiae (S. cerevisiae) and the nematode Caenorhabditis elegans (C. elegans) as model organisms for studying mitochondrial ribosome dysfunctions including those involved in human diseases.


Subject(s)
Alzheimer Disease , Mitochondrial Diseases , Saccharomyces cerevisiae Proteins , Alzheimer Disease/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Humans , RNA, Ribosomal , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Tellurium
14.
J Biotechnol ; 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35182607

ABSTRACT

While in recent years the key role of non-coding RNAs (ncRNAs) in regulation of gene expression has become increasingly evident, their interaction with the global regulatory circuits is still obscure. Here we analyzed the structure and organization of the transcriptome of Streptomyces ambofaciens, the producer of spiramycin. We identified ncRNAs including 45 small-RNAs (sRNAs) and 119 antisense-RNAs (asRNAs I) that appear transcribed from dedicated promoters. Some sRNAs and asRNAs are unprecedented in Streptomyces, and were predicted to target mRNAs encoding proteins involved in transcription, translation, ribosomal structure and biogenesis, and regulation of morphological and biochemical differentiation. We then compared ncRNA expression in three strains: i.) the wild type strain; ii.) an isogenic pirA-defective mutant with central carbon metabolism imbalance, "relaxed" phenotype, and repression of antibiotic production; iii.) a pirA-derivative strain harboring a "stringent" RNA polymerase that suppresses pirA-associated phenotypes. Data indicated that expression of most ncRNAs was correlated to the stringent/relaxed phenotype suggesting novel effector mechanisms of the stringent response.

15.
Foods ; 11(3)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35159586

ABSTRACT

Grain sorghum (Sorghum bicolor) is a gluten-free cereal grown around the world and is a food staple in semi-arid and subtropical regions. Sorghum is a diverse crop with a range of pericarp colour including white, various shades of red, and black, all of which show health-promoting properties as they are rich sources of antioxidants such as polyphenols, carotenoids, as well as micro- and macro-nutrients. This work examined the grain composition of three sorghum varieties possessing a range of pericarp colours (white, red, and black) grown in the Mediterranean region. To determine the nutritional quality independent of the contributions of phenolics, mineral and fatty acid content and composition were measured. Minor differences in both protein and carbohydrate were observed among varieties, and a higher fibre content was found in both the red and black varieties. A higher amount of total saturated fats was found in the white variety, while the black variety had a lower amount of total unsaturated and polyunsaturated fats than either the white or red varieties. Oleic, linoleic, and palmitic were the primary fatty acids in all three analysed sorghum varieties. Significant differences in mineral content were found among the samples with a greater amount of Mg, K, Al, Mn, Fe, Ni, Zn, Pb and U in both red and black than the white sorghum variety. The results show that sorghum whole grain flour made from grain with varying pericarp colours contains unique nutritional properties.

16.
J Bacteriol ; 204(2): e0046221, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34694905

ABSTRACT

The YjgF/YER057c/UK114 (Rid) is a protein family breadth conserved in all domains of life and includes the widely distributed archetypal RidA (YjgF) subfamily and seven other subfamilies (Rid1 to Rid7). Among these subfamilies, RidA is the only family to have been biochemically well characterized and is involved in the deamination of the reactive enamine/imine intermediates. In this study, we have characterized a protein of the Rid7 subfamily, named Rid7C, in Nonomuraea gerenzanensis, an actinomycete that is characterized by the presence of two types of RNA polymerases. This is due to the coexistence in its genome of two RNA polymerase (RNAP) ß chain-encoding genes, rpoB(S) (the wild-type rpoB gene) and rpoB(R) (a specialist, mutant-type rpoB gene) that controls A40926 antibiotic production and a wide range of metabolic adaptive behaviors. Here, we found that expression of rpoB(R) is regulated posttranscriptionally by RNA processing in the 5' untranslated region (UTR) of rpoB(R) mRNA and that the endoribonuclease activity of Rid7C is responsible for mRNA processing, thereby overseeing several tracts of morphological and biochemical differentiation. We also provide evidence that Rid7C may be associated with RNase P M1 RNA, although M1 RNA is not required for rpoB(R) mRNA processing in vitro, and that Rid7C endoribonuclease activity is inhibited by A40926, suggesting the existence of a negative feedback loop in A40926 production and a role of the endogenous synthesis of A40926 in the modulation of biochemical differentiation in this microorganism. IMPORTANCE The YjgF/YER057c/UK114 family includes many proteins with diverse functions involved in detoxification, RNA maturation, and control of mRNA translation. We found that Rid7C is an endoribonuclease that is involved in processing of rpoB(R) mRNA, coding for a specialized RNA polymerase beta subunit that oversees morphological differentiation and A40926 antibiotic production in Nonomuraea gerenzanensis. Rid7C-mediated processing promotes rpoB(R) mRNA translation and antibiotic production, while Rid7C endoribonuclease activity is inhibited by A40926, suggesting a role of the endogenous synthesis of A40926 in modulation of biochemical differentiation in this microorganism. Finally, we show that recombinant Rid7C copurified with M1 RNA (the RNA subunit of RNase P) from Escherichia coli extract, suggesting a functional interaction between Rid7C and M1 RNA activities.


Subject(s)
Actinobacteria/genetics , Actinobacteria/metabolism , DNA-Directed RNA Polymerases/genetics , Endoribonucleases/genetics , Gene Expression Regulation, Bacterial , Actinobacteria/drug effects , Actinobacteria/enzymology , Anti-Bacterial Agents/biosynthesis , Bacterial Proteins/metabolism , DNA-Directed RNA Polymerases/metabolism , Endoribonucleases/metabolism , Teicoplanin/analogs & derivatives , Teicoplanin/pharmacology
17.
One Health ; 13: 100352, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34841034

ABSTRACT

In the frames of a One Health strategy, i.e. a strategy should be able to predict susceptibility to infection in both humans and animals, developing a SARS-CoV-2 mutation tracking system is a goal. We observed that the phylogenetic proximity of vertebrate ACE2 receptors does not affect the binding energy for the viral spike protein. However, all viral variants seem to bind ACE2 better in many animals than in humans. Moreover, two observations highlight that the evolution of the virus started at the beginning of 2020 and culminated with the appearance of the variants. First, codon usage analysis shows that the B.1.1.7 (alpha), B.1.351 (beta) and B.1.617.2 (delta) variants, similar in the use of codons, are also similar to a virus sampled in January 2020. Second, the host-specific D614G mutation becomes prevalent starting from March 2020. Overall, we show that SARS-CoV-2 undergoes a process of molecular evolution that begins with the optimization of codons followed by the functional optimization of the spike protein.

18.
Antibiotics (Basel) ; 10(8)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34438997

ABSTRACT

While in recent years the key role of non-coding RNAs (ncRNAs) in the regulation of gene expression has become increasingly evident, their interaction with the global regulatory circuits is still obscure. Here we analyzed the structure and organization of the transcriptome of Streptomyces ambofaciens, the producer of spiramycin. We identified ncRNAs including 45 small-RNAs (sRNAs) and 119 antisense-RNAs (asRNAs I) that appear transcribed from dedicated promoters. Some sRNAs and asRNAs are unprecedented in Streptomyces and were predicted to target mRNAs encoding proteins involved in transcription, translation, ribosomal structure and biogenesis, and regulation of morphological and biochemical differentiation. We then compared ncRNA expression in three strains: (i) the wild-type strain; (ii) an isogenic pirA-defective mutant with central carbon metabolism imbalance, "relaxed" phenotype, and repression of antibiotic production; and (iii) a pirA-derivative strain harboring a "stringent" RNA polymerase that suppresses pirA-associated phenotypes. Data indicated that the expression of most ncRNAs was correlated to the stringent/relaxed phenotype suggesting novel effector mechanisms of the stringent response.

19.
Res Microbiol ; 172(6): 103865, 2021.
Article in English | MEDLINE | ID: mdl-34284091

ABSTRACT

An extensive morphological analysis of the Neisseria meningitidis cell envelope, including serogroup B capsule and outer membrane, based on atomic force microscopy (AFM) together with mechanical characterization by force spectroscopic measurements, has been carried out. Three meningococcal strains were used: the encapsulated serogroup B strain B1940, and the isogenic mutants B1940 siaD(+C) (lacking capsule), and B1940 cps (lacking both capsule and lipooligosaccharide outer core). AFM experiments with the encapsulated strain B1940 provided unprecedented images of the meningococcal capsule, which seems to be characterized by protrusions ("bumps") with the lateral dimensions of about 30 nm. Measurement of the Young's modulus provided quantitative assessment of the property of the capsule to confer resistance to mechanical stress. Moreover, Raman spectroscopy gave a fingerprint by which it was possible to identify the specific molecular species of the three strains analyzed, and to highlight major differences between them.


Subject(s)
Bacterial Capsules/ultrastructure , Bacterial Outer Membrane/ultrastructure , Neisseria meningitidis, Serogroup B/ultrastructure , Bacterial Capsules/chemistry , Bacterial Capsules/physiology , Bacterial Outer Membrane/chemistry , Bacterial Outer Membrane/physiology , Elastic Modulus , Microscopy, Atomic Force , Neisseria meningitidis, Serogroup B/chemistry , Neisseria meningitidis, Serogroup B/genetics , Polysaccharides, Bacterial/chemistry , Spectrum Analysis, Raman , Stress, Mechanical , Surface Properties
20.
Cancers (Basel) ; 13(9)2021 May 06.
Article in English | MEDLINE | ID: mdl-34066419

ABSTRACT

RAB7A is a small GTPase that controls the late endocytic pathway but also cell migration through RAC1 (Ras-related C3 botulinum toxin substrate 1) and vimentin. In fact, RAB7A regulates vimentin phosphorylation at different sites and vimentin assembly, and, in this study, we identified vimentin domains interacting with RAB7A. As several kinases could be responsible for vimentin phosphorylation, we investigated whether modulation of RAB7A expression affects the activity of these kinases. We discovered that RAB7A regulates AKT and PAK1, and we demonstrated that increased vimentin phosphorylation at Ser38 (Serine 38), observed upon RAB7A overexpression, is due to AKT activity. As AKT and PAK1 are key regulators of several cellular events, we investigated if RAB7A could have a role in these processes by modulating AKT and PAK1 activity. We found that RAB7A protein levels affected beta-catenin and caspase 9 expression. We also observed the downregulation of cofilin-1 and decreased matrix metalloproteinase 2 (MMP2) activity upon RAB7A silencing. Altogether these results demonstrate that RAB7A regulates AKT and PAK1 kinases, affecting their downstream effectors and the processes they regulate, suggesting that RAB7A could have a role in a number of cancer hallmarks.

SELECTION OF CITATIONS
SEARCH DETAIL