Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Reproduction ; 160(2): 205-215, 2020 08.
Article in English | MEDLINE | ID: mdl-32438343

ABSTRACT

The existence of cytoplasmic passages between germ cells and their potential function in the control of the spermatogenic process has long been an intriguing question. Evidence of the important role of such structures, known as intercellular bridges (ICB), in spermatogenesis has been implicated by the failure of spermatogenesis in testis-expressed gene 14 (Tex14) mutant mice, which lack the ICBs, to progress past the pachytene spermatocyte stage. Using these Tex14 mutants, the present study evaluated, for the first time, the behavior and synchrony of the spermatogonial lineage in the absence of ICBs. Our data suggest that the absence of these cytoplasmic connections between cells affects the expansion of the undifferentiated type A (Aundiff) spermatogonia compartment and their transition to A1, resulting in a significant numerical reduction of differentiating A1 spermatogonia, but did not interfere with cell amplification during subsequent mitotic steps of differentiating spermatogonia from A1 through intermediate (In). However, beginning at the type B spermatogonia, the synchrony of differentiation was impaired as some cells showed delayed differentiation compared to their behavior in a normal seminiferous epithelium cycle. Thus although spermatogonial development is able to proceed, in the absence of ICBs in Tex14-/- mutants, the yield of cells, specific steps of differentiation, the synchrony of the cell kinetics, and the subsequent progression in meiosis are quantitatively lower than normal.


Subject(s)
Cell Communication , Cell Differentiation , Meiosis , Seminiferous Epithelium/pathology , Spermatogenesis , Spermatogonia/pathology , Transcription Factors/physiology , Animals , Cell Proliferation , Cytoplasm , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Seminiferous Epithelium/metabolism , Spermatogonia/metabolism
2.
Reproduction ; 159(4): 437-451, 2020 04.
Article in English | MEDLINE | ID: mdl-31990675

ABSTRACT

Human spermatogonial stem cells (SSCs) are an essential source to maintain spermatogenesis as an efficient process for daily sperm production with high self-renewal capacity along adulthood. However, the phenotype and the subpopulation that represent the real reserve SSC for the human testis remain unknown. Moreover, although SSC markers have been described for undifferentiated spermatogonia (Adark and Apale), the existence of a specific subtype that could be identified as the actual/true SSC has not yet been fully determined. Herein we evaluated spermatogonial morphology, kinetics, positioning regarding blood vasculature in relation to protein expression (UTF1, GFRA1, and KIT) as well as proliferative activity (MCM7) and identified a small subpopulation of Adark with nuclear rarefaction zone (AdVac) that behaves as the human reserve SSC. We show that AdVac is the smallest human spermatogonial population (10%), staying quiescent (89%) and positioned close to blood vessels throughout most of the stages of the seminiferous epithelium cycle (SEC) and divides only at stages I and II. Within this AdVac population, we found a smaller pool (2% of A undifferentiated spermatogonia) of entirely quiescent cells exhibiting a high expression of UTF1 and lacking GFRA1. This finding suggests them as the real human reserve SSC (AdVac UTF1+/GFRA1-/MCM7-). Additionally, Adark without nuclear vacuole (AdNoVac) and Apale have similar kinetic and high proliferative capacity throughout the SEC (47%), indicating that they are actively dividing undifferentiated spermatogonia. Identification of human stem cells with evident reserve SSC functionality may help further studies intending to sort SSCs to treat male diseases and infertility.


Subject(s)
Adult Germline Stem Cells , Spermatogonia/physiology , Testis/cytology , Adult , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Humans , Male , Middle Aged , Mitosis , Nuclear Proteins/metabolism , Spermatogonia/cytology , Testis/blood supply , Trans-Activators/metabolism
3.
Mol Hum Reprod ; 24(6): 299-309, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29660000

ABSTRACT

STUDY QUESTION: Could a more detailed evaluation of marmoset spermatogonial morphology, kinetics and niches using high-resolution light microscopy (HRLM) lead to new findings? SUMMARY ANSWER: Three subtypes of marmoset undifferentiated spermatogonia, which were not evenly distributed in terms of number and position along the basal membrane, and an extra premeiotic cell division not present in humans were identified using HRLM. WHAT IS KNOWN ALREADY: The seminiferous epithelium cycle (SEC) of marmosets is divided into nine stages when based on the acrosome system, and several spermatogenic stages can usually be recognized within the same tubular cross-section. Three spermatogonial generations have been previously described in marmosets: types Adark, Apale and B spermatogonia. STUDY DESIGN, SIZE, DURATION: Testes from five adult Callithrix penicillata were fixed by glutaraldehyde perfusion via the cardiac route and embedded in Araldite plastic resin for HRLM evaluation. Semi-thin sections (1 µm) were analyzed morphologically and morphometrically to evaluate spermatogonial morphology and kinetics (number, mitosis and apoptosis), spermatogenesis efficiency and the spermatogonial niche. PARTICIPANTS/MATERIALS, SETTING, METHODS: Shape and nuclear diameter, the presence and distribution of heterochromatin, the granularity of the euchromatin, as well as the number, morphology and degree of nucleolar compaction were observed for morphological characterization. Kinetics analyses were performed for all spermatogonial subtypes and preleptotene spermatocytes, and their mitosis and apoptosis indexes determined across all SEC stages. Spermatogenesis parameters (mitotic, meiotic, Sertoli cell workload and general spermatogenesis efficiency) were determined through the counting of Adark and Apale spermatogonia, preleptotene and pachytene primary spermatocytes, round spermatids, and Sertoli cells at stage IV of the SEC. MAIN RESULTS AND THE ROLE OF CHANCE: This is the first time that a study in marmosets demonstrates: the existence of a new spermatogonial generation (B2); the presence of two subtypes of Adark spermatogonia with (AdVac) and without (AdNoVac) nuclear rarefaction zones; the peculiar behavior of AdVac spermatogonia across the stages of the SEC, suggesting that they are quiescent stem spermatogonia; and that AdVac spermatogonia are located close to areas in which blood vessels, Leydig cells and macrophages are concentrated, suggesting a niche area for these cells. LARGE SCALE DATA: Not applicable. LIMITATIONS, REASONS FOR CAUTION: The C. penicillata spermatogonial kinetics evaluated here consider spermatogonial number across the SEC and their mitotic and apoptotic figures identified in HRLM sections. Therefore, caution is required when comparing absolute values between species. Although morphometric evaluation has suggested that AdVac spermatogonia are stem cells, a functional proof of this is still missing. It is known that parameters of the spermatogenic process in C. penicillata have similarities with those of the common marmoset C. jacchus, however, a detailed study of spermatogonial morphology, kinetics and niche has not yet been performed in C. jacchus, and a full comparison of the two species is not possible. WIDER IMPLICATIONS OF THE FINDINGS: Our findings in C. penicillata contribute to a better understanding of the spermatogonial behavior and spermatogenesis efficiency in non-human primates. Given the phylogenetic closeness of the marmoset to the human species, similar processes might occur in humans. Therefore, marmosets may be an excellent model for studies regarding human testicular biology, fertility and related disorders. STUDY FUNDING/COMPETING INTEREST(S): Experiments were partially supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq). The authors declare that there are no conflicts of interest.


Subject(s)
Callithrix , Spermatogonia/physiology , Acrosome/physiology , Acrosome/ultrastructure , Animals , Apoptosis , Kinetics , Male , Mitosis , Seminiferous Epithelium/cytology , Spermatogenesis , Spermatogonia/cytology , Testis/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...