Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(8): e0160438, 2016.
Article in English | MEDLINE | ID: mdl-27500934

ABSTRACT

Quantifying differences in species composition among communities provides important information related to the distribution, conservation and management of biodiversity, especially when two components are recognized: dissimilarity due to turnover, and dissimilarity due to richness differences. The ecoregions in central Mexico, within the Mexican Transition Zone, have outstanding environmental heterogeneity and harbor huge biological richness, besides differences in the origin of the biota. Therefore, biodiversity studies in this area require the use of complementary measures to achieve appropriate information that may help in the design of conservation strategies. In this work we analyze the dissimilarity of terrestrial vertebrates, and the components of turnover and richness differences, among six ecoregions in the state of Hidalgo, central Mexico. We follow two approaches: one based on species level dissimilarity, and the second on taxonomic dissimilarity. We used databases from the project "Biodiversity in the state of Hidalgo". Our results indicate that species dissimilarity is higher than taxonomic dissimilarity, and that turnover contributes more than richness differences, both for species and taxonomic total dissimilarity. Moreover, total dissimilarity, turnover dissimilarity and the dissimilarity due to richness differences were positively related in the four vertebrate groups. Reptiles had the highest values of dissimilarity, followed by mammals, amphibians and birds. For reptiles, birds, and mammals, species turnover was the most important component, while richness differences had a higher contribution for amphibians. The highest values of dissimilarity occurred between environmentally contrasting ecoregions (i.e., tropical and temperate forests), which suggests that environmental heterogeneity and differences in the origin of biotas are key factors driving beta diversity of terrestrial vertebrates among ecoregions in this complex area.


Subject(s)
Biodiversity , Vertebrates , Amphibians/classification , Animals , Birds/classification , Databases, Factual , Ecosystem , Forests , Mammals/classification , Mexico , Reptiles/classification , Vertebrates/classification
2.
PLoS One ; 8(12): e82905, 2013.
Article in English | MEDLINE | ID: mdl-24324840

ABSTRACT

We explore the influence of spatial grain size, dispersal ability, and geographic distance on the patterns of species dissimilarity of terrestrial vertebrates, separating the dissimilarity explained by species replacement (turnover) from that resulting from richness differences. With data for 905 species of terrestrial vertebrates distributed in the Isthmus of Tehuantepec, classified into five groups according to their taxonomy and dispersal ability, we calculated total dissimilarity and its additive partitioning as two components: dissimilarity derived from turnover and dissimilarity derived from richness differences. These indices were compared using fine (10 x 10 km), intermediate (20 x 20 km) and coarse (40 x 40 km) grain grids, and were tested for any correlations with geographic distance. The results showed that total dissimilarity is high for the terrestrial vertebrates in this region. Total dissimilarity, and dissimilarity due to turnover are correlated with geographic distance, and the patterns are clearer when the grain is fine, which is consistent with the distance-decay pattern of similarity. For all terrestrial vertebrates tested on the Isthmus of Tehuantepec both the dissimilarity derived from turnover and the dissimilarity resulting from richness differences make important contributions to total dissimilarity, and dispersal ability does not seem to influence the dissimilarity patterns. These findings support the idea that conservation efforts in this region require a system of interconnected protected areas that embrace the environmental, climatic and biogeographic heterogeneity of the area.


Subject(s)
Biodiversity , Ecosystem , Vertebrates , Animals , Environment , Mexico , Spatial Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...