Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Viruses ; 16(4)2024 04 03.
Article in English | MEDLINE | ID: mdl-38675903

ABSTRACT

Gliomas account for approximately 75-80% of all malignant primary tumors in the central nervous system (CNS), with glioblastoma multiforme (GBM) considered the deadliest. Despite aggressive treatment involving a combination of chemotherapy, radiotherapy, and surgical intervention, patients with GBM have limited survival rates of 2 to 5 years, accompanied by a significant decline in their quality of life. In recent years, novel management strategies have emerged, such as immunotherapy, which includes the development of vaccines or T cells with chimeric antigen receptors, and oncolytic virotherapy (OVT), wherein wild type (WT) or genetically modified viruses are utilized to selectively lyse tumor cells. In vitro and in vivo studies have shown that the Zika virus (ZIKV) can infect glioma cells and induce a robust oncolytic activity. Consequently, interest in exploring this virus as a potential oncolytic virus (OV) for high-grade gliomas has surged. Given that ZIKV actively circulates in Colombia, evaluating its neurotropic and oncolytic capabilities holds considerable national and international importance, as it may emerge as an alternative for treating highly complex gliomas. Therefore, this literature review outlines the generalities of GBM, the factors determining ZIKV's specific tropism for nervous tissue, and its oncolytic capacity. Additionally, we briefly present the progress in preclinical studies supporting the use of ZIKV as an OVT for gliomas.


Subject(s)
Brain Neoplasms , Glioma , Oncolytic Virotherapy , Oncolytic Viruses , Zika Virus Infection , Zika Virus , Oncolytic Virotherapy/methods , Humans , Zika Virus/physiology , Oncolytic Viruses/genetics , Oncolytic Viruses/physiology , Glioma/therapy , Glioma/virology , Animals , Zika Virus Infection/therapy , Zika Virus Infection/virology , Brain Neoplasms/therapy , Brain Neoplasms/virology , Glioblastoma/therapy , Glioblastoma/virology
2.
Int J Microbiol ; 2024: 4894004, 2024.
Article in English | MEDLINE | ID: mdl-38500634

ABSTRACT

PCR and its variants (RT-PCR and qRT-PCR) are valuable and innovative molecular techniques for studying nucleic acids. qPCR has proven to be highly sensitive, efficient, and reproducible, generating reliable results that are easy to analyze. During the COVID-19 pandemic, qPCR became the gold standard technique for detecting the SARS-CoV-2 virus that allowed to confirm the infection event, and those asymptomatic ones, and thus save millions of lives. In-house multiplex qPCR tests were developed worldwide to detect different viral targets and ensure results, follow the infections, and favor the containment of a pandemic. Here, we present the detailed fundamentals of the qPCR technique based on fluorogenic probes and processes to develop and optimize a successful multiplex RT-qPCR test for detecting SARS-CoV-2 that could be used to diagnose COVID-19 accurately.

3.
MethodsX ; 11: 102356, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37701736

ABSTRACT

Arboviruses transmitted by Culicidae insects are significant threats to human health, presenting dynamic transmission cycles and involving different vectors and hosts. The surveillance and characterization of the vectors involved in these cycles are crucial for understanding and preventing potential outbreaks. Therefore, we propose a strategy that we used for entomological surveillance of urban, rural, and sylvatic mosquitoes and to characterize natural infection by four major arboviruses.•Immature and adult mosquitoes were collected intra, peri and extradomicilie of urban and rural households, using different collection methodologies.•Mosquitoes were pooled or separated in head-thorax and abdomen, according to the species.•A multiplex nested RT-PCR (Reverse transcription polymerase chain reaction) method was used for the simultaneous detection of dengue virus (DENV), zika virus (ZIKV), chikungunya virus (CHIKV), and yellow fever virus (YFV).Overall, this strategy proved helpful for vectors surveillance at different ecosystems, as well as for implementing a low-cost molecular surveillance system that allows the early detection of potential outbreaks, and identify other potential vectors involved in viral transmission.

4.
Front Bioeng Biotechnol ; 11: 1181842, 2023.
Article in English | MEDLINE | ID: mdl-37214285

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. Therefore, development of novel technologies and strategies to treat PD is a global health priority. Current treatments include administration of Levodopa, monoamine oxidase inhibitors, catechol-O-methyltransferase inhibitors, and anticholinergic drugs. However, the effective release of these molecules, due to the limited bioavailability, is a major challenge for the treatment of PD. As a strategy to solve this challenge, in this study we developed a novel multifunctional magnetic and redox-stimuli responsive drug delivery system, based on the magnetite nanoparticles functionalized with the high-performance translocating protein OmpA and encapsulated into soy lecithin liposomes. The obtained multifunctional magnetoliposomes (MLPs) were tested in neuroblastoma, glioblastoma, primary human and rat astrocytes, blood brain barrier rat endothelial cells, primary mouse microvascular endothelial cells, and in a PD-induced cellular model. MLPs demonstrated excellent performance in biocompatibility assays, including hemocompatibility (hemolysis percentages below 1%), platelet aggregation, cytocompatibility (cell viability above 80% in all tested cell lines), mitochondrial membrane potential (non-observed alterations) and intracellular ROS production (negligible impact compared to controls). Additionally, the nanovehicles showed acceptable cell internalization (covered area close to 100% at 30 min and 4 h) and endosomal escape abilities (significant decrease in lysosomal colocalization after 4 h of exposure). Moreover, molecular dynamics simulations were employed to better understand the underlying translocating mechanism of the OmpA protein, showing key findings regarding specific interactions with phospholipids. Overall, the versatility and the notable in vitro performance of this novel nanovehicle make it a suitable and promising drug delivery technology for the potential treatment of PD.

5.
One Health ; 15: 100438, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36277089

ABSTRACT

Arbovirus, a critical threat to human health, have complex and dynamic life cycles. With reports of Yellow fever virus (YFV) causing spillover from sylvatic transmission cycles, and dengue (DENV), chikungunya (CHIKV), and Zika (ZIKV) viruses expanding from urban to rural areas. We explored a multidisciplinary approach to analyze arbovirus transmission through vectors, and identify biological and sociodemographic determinants associated with their transmission risk in urban and rural areas in a Colombian municipality. We visited 178 urban and 97 rural households, registered sociodemographic characteristics and vaccination status for each of these households, collected adult and immature mosquitoes at the intra-, peri-, and extra-domicile, and surveyed forest patches in rural areas. Infections of YFV, DENV, ZIKV, and CHIKV in the mosquitoes collected in the wild were analyzed using a reverse transcriptase PCR. We identified various risk factors of transmission associated with a high Aedes aegypti infestation in urban areas and their presence in rural settlements and Haemagogus janthinomys and other sylvatic mosquitoes near urban areas. The collected Ae. aegypti females from urban areas had a high infection rate of YFV (5.8%) and CHIKV (58.8%), and those from rural settlements had a high infection rate of DENV (33%), CHIKV (16.7%), and ZIKV (16.7%). The infection rates of YFV in the thorax of the sylvatic mosquitoes H. janthinomys and Aedes serratus collected from the forest patches were 14.3 and 42.1%, respectively. We could discern the transmission determinants associated with climatic, socioeconomic, and anthropogenic factors and YFV vaccination status. This multidisciplinary approach for surveillance of arboviral diseases allowed us to independently detect and integrate factors indicating an early risk of rural transmission of DENV, CHIKV, and ZIKV and rural and urban outbreaks of YFV in the study area. This study provides a helpful tool for designing and focalizing prevention strategies.

6.
Viruses ; 14(8)2022 08 12.
Article in English | MEDLINE | ID: mdl-36016387

ABSTRACT

Dengue is a viral infection caused by dengue virus (DENV), which has a significant impact on public health worldwide. Although most infections are asymptomatic, a series of severe clinical manifestations such as hemorrhage and plasma leakage can occur during the severe presentation of the disease. This suggests that the virus or host immune response may affect the protective function of endothelial barriers, ultimately being considered the most relevant event in severe and fatal dengue pathogenesis. The mechanisms that induce these alterations are diverse. It has been suggested that the high mobility group box 1 protein (HMGB1) may be involved in endothelial dysfunction. This non-histone nuclear protein has different immunomodulatory activities and belongs to the alarmin group. High concentrations of HMGB1 have been detected in patients with several infectious diseases, including dengue, and it could be considered as a biomarker for the early diagnosis of dengue and a predictor of complications of the disease. This review summarizes the main features of dengue infection and describes the known causes associated with endothelial dysfunction, highlighting the involvement and possible relationship between HMGB1 and DENV.


Subject(s)
Dengue Virus , Dengue , HMGB1 Protein , Vascular Diseases , Dengue Virus/physiology , HMGB1 Protein/metabolism , Hemorrhage , Humans
7.
Nat Biomed Eng ; 6(3): 246-256, 2022 03.
Article in English | MEDLINE | ID: mdl-35256758

ABSTRACT

In low-resource settings, resilience to infectious disease outbreaks can be hindered by limited access to diagnostic tests. Here we report the results of double-blinded studies of the performance of paper-based diagnostic tests for the Zika and chikungunya viruses in a field setting in Latin America. The tests involved a cell-free expression system relying on isothermal amplification and toehold-switch reactions, a purpose-built portable reader and onboard software for computer vision-enabled image analysis. In patients suspected of infection, the accuracies and sensitivities of the tests for the Zika and chikungunya viruses were, respectively, 98.5% (95% confidence interval, 96.2-99.6%, 268 serum samples) and 98.5% (95% confidence interval, 91.7-100%, 65 serum samples) and approximately 2 aM and 5 fM (both concentrations are within clinically relevant ranges). The analytical specificities and sensitivities of the tests for cultured samples of the viruses were equivalent to those of the real-time quantitative PCR. Cell-free synthetic biology tools and companion hardware can provide de-centralized, high-capacity and low-cost diagnostics for use in low-resource settings.


Subject(s)
Chikungunya Fever , Chikungunya virus , Dengue , Zika Virus Infection , Zika Virus , Chikungunya Fever/diagnosis , Chikungunya Fever/epidemiology , Dengue/diagnosis , Humans , Zika Virus/genetics , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology
8.
PLoS One ; 15(1): e0227030, 2020.
Article in English | MEDLINE | ID: mdl-31910224

ABSTRACT

Endothelial activation and alteration during dengue virus (DENV) infection are multifactorial events; however, the role of extracellular vesicles (EVs) in these phenomena is not known. In the present study, we characterized the EVs released by DENV-2 infected U937 macrophage cell line and evaluated the changes in the physiology and integrity of the EA.hy926 endothelial cells exposed to them. U937 macrophages were infected, supernatants were collected, and EVs were purified and characterized. Then, polarized endothelial EA.hy926 cells were exposed to the EVs for 24 h, and the transendothelial electrical resistance (TEER), monolayer permeability, and the expression of tight junction and adhesion proteins and cytokines were evaluated. The isolated EVs from infected macrophages corresponded to exosomes and apoptotic bodies, which contained the viral NS3 protein and different miRs, among other products. Exposure of EA.hy926 cells to EVs induced an increase in TEER, as well as changes in the expression of VE-cadherin and ICAM in addition leads to an increase in TNF-α, IP-10, IL-10, RANTES, and MCP-1 secretion. These results suggest that the EVs of infected macrophages transport proteins and miR that induce early changes in the physiology of the endothelium, leading to its activation and eliciting a defense program against damage during first stages of the disease, even in the absence of the virus.


Subject(s)
Dengue Virus , Endothelial Cells/metabolism , Extracellular Vesicles/virology , Macrophages/ultrastructure , Antigens, CD/metabolism , Cadherins/metabolism , Cell Adhesion Molecules/metabolism , Cytokines/metabolism , Dengue/immunology , Dengue Virus/immunology , Endothelial Cells/immunology , Extracellular Vesicles/physiology , Humans , Macrophages/virology , Permeability , U937 Cells
9.
Int J Infect Dis ; 91: 9-16, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31733358

ABSTRACT

OBJECTIVES: Colombia is a dengue hyperendemic country; however, the prevalence of antibodies against dengue in the general population including the inhabitants of rural areas is unknown. This study aimed to determine the prevalence of dengue IgM and IgG antibodies in healthy children and adults in urban and rural areas of seven different endemic regions in Colombia between 2013 and 2015. DESIGN OR METHOD: Blood samples from healthy volunteers (1,318) were processed by serology (by indirect IgG and capture IgM and IgG ELISA) and molecular tests to detect viral RNA and circulating serotypes. RESULTS: The seroprevalence of IgG for dengue were 85% in children and over 90% for adults. In addition to the high IgM positive rate (14.9%) and secondary recent infection marker rate (capture IgG, 16%), 8.4% of the healthy volunteers were positive for dengue virus (DENV) RNA. CONCLUSION: This study confirmed the broad and permanent circulation of DENV in Colombia and the high rates of infection and reinfection suffered by its inhabitants. This information can be used by the health authorities to strengthen vector control and vaccine policies and review the algorithms of diagnosis and disease management in children and adults.


Subject(s)
Antibodies, Viral/blood , Dengue Virus/immunology , Dengue/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Coinfection , Colombia/epidemiology , Dengue/immunology , Dengue Virus/genetics , Endemic Diseases , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , RNA, Viral/immunology , Seroepidemiologic Studies , Serogroup , Young Adult
10.
Acta biol. colomb ; 24(3): 509-519, Sep.-Dec. 2019. graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1054645

ABSTRACT

RESUMEN Algunos virus envueltos usurpan la maquinaria celular ESCRT (complejo de clasificación endosomal requerido para el transporte) para llevar a cabo funciones como la transcripción, la traducción, el ensamblaje y la liberación de partículas virales desde las células huésped. Aunque esta estrategia ha sido estudiada principalmente en retrovirus, son varios los virus envueltos que la usan. El objetivo del trabajo fue explorar la participación de una proteína accesoria de ESCRT, la proteína Alix, en la transcripción, traducción, ensamblaje y liberación del virus dengue (DENV), así como su interacción con la proteína viral NS3. Células A549 infectadas con DENV2 fueron tratadas con pequeños ARN de interferencia (siRNA) para disminuir la expresión ("knock-down") de la proteína Alix. Simultáneamente, se obtuvo una línea A549 que expresaba una proteína NS3 recombinante y sobre este sistema se hicieron ensayos de inmunoprecipitación y "pull-down" para detectar interacción entre NS3 y Alix. Los resultados mostraron que el "knock-down" de Alix no tuvo efecto notable en la transcripción o la traducción viral, pero sí en el ensamblaje y la liberación de DENV2, mientras que los ensayos de "pull-down" revelaron la interacción entre NS3 y Alix. La participación de Alix en la producción de DENV2 y su interacción con NS3 constituyen un potencial blanco para el diseño de estrategias dirigidas a controlar la propagación de DENV.


ABSTRACT Since the finding that HIV recruits cellular ESCRT (endosomal sorting complexes required for transport) machinery to accomplish viral budding, this strategy has emerged as an escape route for enveloped viruses also. The work aimed to explore the participation of the cellular protein Alix (a human protein that acts as an adapter in the ESCRT pathway) on the transcription, protein expression, assembly and release of Dengue virus (DENV), and explore for its potential interaction with the viral protein NS3. To this purpose, A549 cells were infected with DENV2 and treated with small interfering RNAs (siRNA) to generate an Alix stable knockdown cells line. Also, an A549 cells line expressing a histidine-tagged NS3 protein was obtained. Both cells lines were used in immunoprecipitation and pull-down assays to assess the interaction between NS3 and Alix. The results showed that Alix knockdown had no effect on viral transcription or viral protein expression but influenced the assembly and release of DENV2 negatively. Finally, pull-down assays revealed the interaction between NS3 and Alix. The finding of an Alix participation in the production of DENV2 and its interaction with NS3 provides a potential target for the design of control/inhibition strategies against DENV spread.

11.
Front Microbiol ; 10: 1435, 2019.
Article in English | MEDLINE | ID: mdl-31293558

ABSTRACT

More than 500 million people worldwide are infected each year by any of the four-dengue virus (DENV) serotypes. The clinical spectrum caused during these infections is wide and some patients may develop neurological alterations during or after the infection, which could be explained by the cryptic neurotropic and neurovirulent features of flaviviruses like DENV. Using in vivo and in vitro models, researchers have demonstrated that DENV can affect the cells from the blood-brain barrier (BBB) in several ways, which could result in brain tissue damage, neuronal loss, glial activation, tissue inflammation and hemorrhages. The latter suggests that BBB may be compromised during infection; however, it is not clear whether the damage is due to the infection per se or to the local and/or systemic inflammatory response established or activated by the BBB cells. Similarly, the kinetics and cascade of events that trigger tissue damage, and the cells that initiate it, are unknown. This review presents evidence of the BBB cell infection with DENV and the response established toward it by these cells; it also describes the consequences of this response on the nervous tissue, compares these evidence with the one reported with neurotropic viruses of the Flaviviridae family, and shows the complexity and unpredictability of dengue and the neurological alterations induced by it. Clinical evidence and in vitro and in vivo models suggest that this virus uses the bloodstream to enter nerve tissue where it infects the different cells of the neurovascular unit. Each of the cell populations respond individually and collectively and control infection and inflammation, in other cases this response exacerbates the damage leaving irreversible sequelae or causing death. This information will allow us to understand more about the complex disease known as dengue, and its impact on a specialized and delicate tissue like is the nervous tissue.

12.
Biomedica ; 37(0): 193-200, 2017 Mar 29.
Article in English | MEDLINE | ID: mdl-29161491

ABSTRACT

INTRODUCTION: There is a high incidence and prevalence of dengue in the department of Cundinamarca, and recently Aedes aegypti, the main vector of dengue virus (DENV), was detected in some of its rural areas. OBJECTIVE: To evaluate viral transovarial transmission in larvae and pupae collected in rural areas of the municipality of Anapoima, Cundinamarca. MATERIALS AND METHODS: Live larvae and pupae were collected from 53 homes and later they were taken to the laboratory in Anapoima, where they were classified, pooled and frozen. In Bogotá, they were homogenized, RNA was extracted with Trizol™, and RT-PCR and conventional PCR were performed. The amplified products were analyzed on 2% agarose gels. RESULTS: In 54.7% of the houses we found A. aegypti in immature stages, and DENV-1 was the most frequent serotype. However, the simultaneous presence of DENV 1 and 2, DENV 1 and 3, DENV 1 and 4, and DENV 1, 2 and 3 serotypes was detected in some pools. CONCLUSION: The results confirmed the natural vertical transmission of the virus in the rural area under study. These findings confirmed the vector capacity of A. aegypti, and partly explains the persistence of the virus in the region and the possibility of transmission by the vector during adulthood without having ingested infected blood. This situation increases the risk of DENV infection in Colombia and the need for prevention and control programs in all areas where the mosquito is present.


Subject(s)
Aedes/virology , Dengue Virus/isolation & purification , Mosquito Vectors/virology , Animals , Colombia/epidemiology , Dengue/epidemiology , Dengue/transmission , Dengue Virus/classification , Dengue Virus/genetics , Geography, Medical , Housing , Humans , Larva/virology , Pupa/virology , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction , Rural Health , Serotyping
13.
PLoS One ; 11(6): e0157786, 2016.
Article in English | MEDLINE | ID: mdl-27336851

ABSTRACT

BACKGROUND: The neurological manifestations of dengue disease are occurring with greater frequency, and currently, no information is available regarding the reasons for this phenomenon. Some viruses infect and/or alter the function of endothelial organs, which results in changes in cellular function, including permeability of the blood-brain barrier (BBB), which allows the entry of infected cells or free viral particles into the nervous system. METHODS: In the present study, we standardized two in vitro models, a polarized monolayer of mouse brain endothelial cells (MBECs) and an organized co-culture containing MBECs and astrocytes. Using these cell models, we assessed whether DENV-4 or the neuro-adapted dengue virus (D4MB-6) variant infects cells or induces changes in the structure or function of the endothelial barrier. RESULTS: The results showed that MBECs, but not astrocytes, were susceptible to infection with both viruses, although the percentage of infected cells was higher when the neuro-adapted virus variant was used. In both culture systems, DENV infection changed the localization of the tight junction proteins Zonula occludens (ZO-1) and Claudin-1 (Cln1), and this process was associated with a decrease in transendothelial resistance, an increase in macromolecule permeability and an increase in the paracellular passing of free virus particles. MBEC infection led to transcriptional up-regulation of adhesion molecules (VCAM-1 and PECAM) and immune mediators (MCP-1 and TNF- α) that are associated with immune cell transmigration, mainly in D4MB-6-infected cells. CONCLUSION: These results indicate that DENV infection in MBECs altered the structure and function of the BBB and activated the endothelium, affecting its transcellular and paracellular permeability and favoring the passage of viruses and the transmigration of immune cells. This phenomenon can be harnessed for neurotropic and neurovirulent strains to infect and induce alterations in the CNS.


Subject(s)
Blood-Brain Barrier/metabolism , Blood-Brain Barrier/virology , Dengue Virus/physiology , Endothelial Cells/metabolism , Endothelial Cells/virology , Animals , Astrocytes/metabolism , Astrocytes/virology , Blood-Brain Barrier/pathology , Cells, Cultured , Coculture Techniques , Dengue/virology , Disease Models, Animal , Endothelium, Vascular/metabolism , Endothelium, Vascular/virology , Macrophages/immunology , Macrophages/metabolism , Mice , Monocytes/immunology , Monocytes/metabolism , Permeability , Thiolester Hydrolases/metabolism , Transendothelial and Transepithelial Migration , Viral Tropism , Zonula Occludens-1 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...