Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 623(7989): 1053-1061, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37844613

ABSTRACT

Inflammation is a hallmark of cancer1. In patients with cancer, peripheral blood myeloid expansion, indicated by a high neutrophil-to-lymphocyte ratio, associates with shorter survival and treatment resistance across malignancies and therapeutic modalities2-5. Whether myeloid inflammation drives progression of prostate cancer in humans remain unclear. Here we show that inhibition of myeloid chemotaxis can reduce tumour-elicited myeloid inflammation and reverse therapy resistance in a subset of patients with metastatic castration-resistant prostate cancer (CRPC). We show that a higher blood neutrophil-to-lymphocyte ratio reflects tumour myeloid infiltration and tumour expression of senescence-associated mRNA species, including those that encode myeloid-chemoattracting CXCR2 ligands. To determine whether myeloid cells fuel resistance to androgen receptor signalling inhibitors, and whether inhibiting CXCR2 to block myeloid chemotaxis reverses this, we conducted an investigator-initiated, proof-of-concept clinical trial of a CXCR2 inhibitor (AZD5069) plus enzalutamide in patients with metastatic CRPC that is resistant to androgen receptor signalling inhibitors. This combination was well tolerated without dose-limiting toxicity and it decreased circulating neutrophil levels, reduced intratumour CD11b+HLA-DRloCD15+CD14- myeloid cell infiltration and imparted durable clinical benefit with biochemical and radiological responses in a subset of patients with metastatic CRPC. This study provides clinical evidence that senescence-associated myeloid inflammation can fuel metastatic CRPC progression and resistance to androgen receptor blockade. Targeting myeloid chemotaxis merits broader evaluation in other cancers.


Subject(s)
Androgen Receptor Antagonists , Antineoplastic Agents , Chemotaxis , Drug Resistance, Neoplasm , Myeloid Cells , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Chemotaxis/drug effects , Disease Progression , Inflammation/drug therapy , Inflammation/pathology , Lewis X Antigen/metabolism , Myeloid Cells/drug effects , Myeloid Cells/pathology , Neoplasm Metastasis , Prostate/drug effects , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/metabolism , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
2.
J Exp Clin Cancer Res ; 42(1): 112, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37143137

ABSTRACT

BACKGROUND: Uterine leiomyosarcoma (uLMS) is a rare and aggressive gynaecological malignancy, with individuals with advanced uLMS having a five-year survival of < 10%. Mutations in the homologous recombination (HR) DNA repair pathway have been observed in ~ 10% of uLMS cases, with reports of some individuals benefiting from poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) therapy, which targets this DNA repair defect. In this report, we screened individuals with uLMS, accrued nationally, for mutations in the HR repair pathway and explored new approaches to therapeutic targeting. METHODS: A cohort of 58 individuals with uLMS were screened for HR Deficiency (HRD) using whole genome sequencing (WGS), whole exome sequencing (WES) or NGS panel testing. Individuals identified to have HRD uLMS were offered PARPi therapy and clinical outcome details collected. Patient-derived xenografts (PDX) were generated for therapeutic targeting. RESULTS: All 13 uLMS samples analysed by WGS had a dominant COSMIC mutational signature 3; 11 of these had high genome-wide loss of heterozygosity (LOH) (> 0.2) but only two samples had a CHORD score > 50%, one of which had a homozygous pathogenic alteration in an HR gene (deletion in BRCA2). A further three samples harboured homozygous HRD alterations (all deletions in BRCA2), detected by WES or panel sequencing, with 5/58 (9%) individuals having HRD uLMS. All five individuals gained access to PARPi therapy. Two of three individuals with mature clinical follow up achieved a complete response or durable partial response (PR) with the subsequent addition of platinum to PARPi upon minor progression during initial PR on PARPi. Corresponding PDX responses were most rapid, complete and sustained with the PARP1-specific PARPi, AZD5305, compared with either olaparib alone or olaparib plus cisplatin, even in a paired sample of a BRCA2-deleted PDX, derived following PARPi therapy in the patient, which had developed PARPi-resistance mutations in PRKDC, encoding DNA-PKcs. CONCLUSIONS: Our work demonstrates the value of identifying HRD for therapeutic targeting by PARPi and platinum in individuals with the aggressive rare malignancy, uLMS and suggests that individuals with HRD uLMS should be included in trials of PARP1-specific PARPi.


Subject(s)
Leiomyosarcoma , Ovarian Neoplasms , Uterine Neoplasms , Female , Humans , Leiomyosarcoma/drug therapy , Leiomyosarcoma/genetics , Leiomyosarcoma/pathology , Platinum , Piperazines/pharmacology , Piperazines/therapeutic use , Uterine Neoplasms/drug therapy , Uterine Neoplasms/genetics , Poly(ADP-ribose) Polymerases , Recombinational DNA Repair , Ovarian Neoplasms/pathology , Homologous Recombination
3.
Cancer Discov ; 11(1): 80-91, 2021 01.
Article in English | MEDLINE | ID: mdl-32988960

ABSTRACT

Targeting the ataxia telangiectasia and RAD3-related (ATR) enzyme represents a promising anticancer strategy for tumors with DNA damage response (DDR) defects and replication stress, including inactivation of ataxia telangiectasia mutated (ATM) signaling. We report the dose-escalation portion of the phase I first-in-human trial of oral ATR inhibitor BAY 1895344 intermittently dosed 5 to 80 mg twice daily in 21 patients with advanced solid tumors. The MTD was 40 mg twice daily 3 days on/4 days off. Most common adverse events were manageable and reversible hematologic toxicities. Partial responses were achieved in 4 patients and stable disease in 8 patients. Median duration of response was 315.5 days. Responders had ATM protein loss and/or deleterious ATM mutations and received doses ≥40 mg twice daily. Overall, BAY 1895344 is well tolerated, with antitumor activity against cancers with certain DDR defects, including ATM loss. An expansion phase continues in patients with DDR deficiency. SIGNIFICANCE: Oral BAY 1895344 was tolerable, with antitumor activity in heavily pretreated patients with various advanced solid tumors, particularly those with ATM deleterious mutations and/or loss of ATM protein; pharmacodynamic results supported a mechanism of action of increased DNA damage. Further study is warranted in this patient population.See related commentary by Italiano, p. 14.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Ataxia Telangiectasia , Neoplasms , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Damage , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Protein Kinase Inhibitors/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...