Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 13494, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31530865

ABSTRACT

Despite extensive studies suggesting increased susceptibility to HIV during the secretory phase of the menstrual cycle, the molecular mechanisms involved remain unclear. Our goal was to analyze transcriptomes of the endocervix and ectocervix during the proliferative and secretory phases using RNA sequencing to explore potential molecular signatures of susceptibility to HIV. We identified 202 differentially expressed genes (DEGs) between the proliferative and secretory phases of the cycle in the endocervix (adjusted p < 0.05). The biofunctions and pathways analysis of DEGs revealed that cellular assembly and epithelial barrier function in the proliferative phase and inflammatory response/cellular movement in the secretory phase were among the top biofunctions and pathways. The gene set enrichment analysis of ranked DEGs (score = log fold change/p value) in the endocervix and ectocervix revealed that (i) unstimulated/not activated immune cells gene sets positively correlated with the proliferative phase and negatively correlated with the secretory phase in both tissues, (ii) IFNγ and IFNα response gene sets positively correlated with the proliferative phase in the ectocervix, (iii) HIV restrictive Wnt/ß-catenin signaling pathway negatively correlated with the secretory phase in the endocervix. Our data show menstrual cycle phase-associated changes in both endocervix and ectocervix, which may modulate susceptibility to HIV.


Subject(s)
Cervix Uteri/metabolism , Follicular Phase/genetics , Gene Expression Profiling , Luteal Phase/genetics , Transcriptome , Computational Biology/methods , Endometrium/metabolism , Female , Gene Ontology , Gene Regulatory Networks , Humans , Signal Transduction
2.
J Cell Sci ; 113 Pt 24: 4451-61, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11082039

ABSTRACT

The human multidrug resistance protein (MRP1) contributes to drug resistance in cancer cells. In addition to an MDR1-like core, MRP1 contains an N-terminal membrane-bound (TMD(0)) region and a cytoplasmic linker (L(0)), both characteristic of several members of the MRP family. In order to study the role of the TMD(0) and L(0) regions, we constructed various truncated and mutated MRP1, and chimeric MRP1-MDR1 molecules, which were expressed in insect (Sf9) and polarized mammalian (MDCKII) cells. The function of the various proteins was examined in isolated membrane vesicles by measuring the transport of leukotriene C(4) and other glutathione conjugates, and by vanadate-dependent nucleotide occlusion. Cellular localization, and glutathione-conjugate and drug transport, were also studied in MDCKII cells. We found that chimeric proteins consisting of N-terminal fragments of MRP1 fused to the N terminus of MDR1 preserved the transport, nucleotide occlusion and apical membrane routing of wild-type MDR1. As shown before, MRP1 without TMD(0)L(0) (Delta MRP1), was non-functional and localized intracellularly, so we investigated the coexpression of Delta MRP1 with the isolated L(0) region. Coexpression yielded a functional MRP1 molecule in Sf9 cells and routing to the lateral membrane in MDCKII cells. Interestingly, the L(0) peptide was found to be associated with membranes in Sf9 cells and could only be solubilized by urea or detergent. A 10-amino-acid deletion in a predicted amphipathic region of L(0) abolished its attachment to the membrane and eliminated MRP1 transport function, but did not affect membrane routing. Taken together, these experiments suggest that the L(0) region forms a distinct domain within MRP1, which interacts with hydrophobic membrane regions and with the core region of MRP1.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP-Binding Cassette Transporters/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Animals , Cell Line , Dogs , Gene Expression , Humans , Multidrug Resistance-Associated Proteins , Mutagenesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Spodoptera/cytology
SELECTION OF CITATIONS
SEARCH DETAIL