Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
iScience ; 27(6): 109915, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38832008

ABSTRACT

Red blood cells possess a singular mechanobiology, enabling efficient navigation through capillaries smaller than their own size. Their plasma membrane exhibits non-equilibrium shape fluctuation, often reported as enhanced flickering activity. Such active membrane motion is propelled by motor proteins that mediate interactions between the spectrin skeleton and the lipid bilayer. However, modulating the flickering in living red blood cells without permanently altering their mechanical properties represents a significant challenge. In this study, we developed holographic optical tweezers to generate a force field distributed along the equatorial membrane contour of individual red blood cells. In free-standing red blood cells, we observed heterogeneous flickering activity, attributed to localized membrane kickers. By employing holographic optical forces, these active kickers can be selectively halted under minimal invasion. Our findings shed light on the dynamics of membrane flickering and established a manipulation tool that could open new avenues for investigating mechanotransduction processes in living cells.

2.
iScience ; 26(1): 105739, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36582828

ABSTRACT

Inhibition of the heterodimeric amino acid carrier SLC7A5/SLC3A2 (LAT1/CD98) has been widely studied in tumor biology but its role in physiological conditions remains largely unknown. Here we show that the SLC7A5/SLC3A2 heterodimer is constitutively present at different stages of erythroid differentiation but absent in mature erythrocytes. Administration of erythropoietin (EPO) further induces SLC7A5/SLC3A2 expression in circulating reticulocytes, as it also occurs in anemic conditions. Although Slc7a5 gene inactivation in the erythrocyte lineage does not compromise the total number of circulating red blood cells (RBCs), their size and hemoglobin content are significantly reduced accompanied by a diminished erythroblast mTORC1 activity. Furthermore circulating Slc7a5-deficient reticulocytes are characterized by lower transferrin receptor (CD71) expression as well as mitochondrial activity, suggesting a premature transition to mature RBCs. These data reveal that SLC7A5/SLC3A2 ensures adequate maturation of reticulocytes as well as the proper size and hemoglobin content of circulating RBCs.

3.
Front Mol Biosci ; 9: 887678, 2022.
Article in English | MEDLINE | ID: mdl-36406277

ABSTRACT

A colloidal synthesis' proof-of-concept based on the Bligh-Dyer emulsion inversion method was designed for integrating into lipid nanoparticles (LNPs) cell-permeating DNA antisense oligonucleotides (ASOs), also known as GapmeRs (GRs), for mRNA interference. The GR@LNPs were formulated to target brain border-associated macrophages (BAMs) as a central nervous system (CNS) therapy platform for silencing neuroinflammation-related genes. We specifically aim at inhibiting the expression of the gene encoding for lipocalin-type prostaglandin D synthase (L-PGDS), an anti-inflammatory enzyme expressed in BAMs, whose level of expression is altered in neuropsychopathologies such as depression and schizophrenia. The GR@LNPs are expected to demonstrate a bio-orthogonal genetic activity reacting with L-PGDS gene transcripts inside the living system without interfering with other genetic or biochemical circuitries. To facilitate selective BAM phagocytosis and avoid subsidiary absorption by other cells, they were functionalized with a mannosylated lipid as a specific MAN ligand for the mannose receptor presented by the macrophage surface. The GR@LNPs showed a high GR-packing density in a compact multilamellar configuration as structurally characterized by light scattering, zeta potential, and transmission electronic microscopy. As a preliminary biological evaluation of the mannosylated GR@LNP nanovectors into specifically targeted BAMs, we detected in vivo gene interference after brain delivery by intracerebroventricular injection (ICV) in Wistar rats subjected to gene therapy protocol. The results pave the way towards novel gene therapy platforms for advanced treatment of neuroinflammation-related pathologies with ASO@LNP nanovectors.

4.
Sci Rep ; 12(1): 933, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35042922

ABSTRACT

Combining single cell experiments, population dynamics and theoretical methods of membrane mechanics, we put forward that the rate of cell proliferation in E. coli colonies can be regulated by modifiers of the mechanical properties of the bacterial membrane. Bacterial proliferation was modelled as mediated by cell division through a membrane constriction divisome based on FtsZ, a mechanically competent protein at elastic interaction against membrane rigidity. Using membrane fluctuation spectroscopy in the single cells, we revealed either membrane stiffening when considering hydrophobic long chain fatty substances, or membrane softening if short-chained hydrophilic molecules are used. Membrane stiffeners caused hindered growth under normal division in the microbial cultures, as expected for membrane rigidification. Membrane softeners, however, altered regular cell division causing persistent microbes that abnormally grow as long filamentous cells proliferating apparently faster. We invoke the concept of effective growth rate under the assumption of a heterogeneous population structure composed by distinguishable individuals with different FtsZ-content leading the possible forms of cell proliferation, from regular division in two normal daughters to continuous growing filamentation and budding. The results settle altogether into a master plot that captures a universal scaling between membrane rigidity and the divisional instability mediated by FtsZ at the onset of membrane constriction.


Subject(s)
Cell Membrane/metabolism , Cell Proliferation/physiology , Escherichia coli/growth & development , Bacterial Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Division/genetics , Cell Division/physiology , Cell Membrane/physiology , Cytoskeletal Proteins/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Membrane Proteins/metabolism , Membranes/metabolism
5.
Cancers (Basel) ; 12(6)2020 May 29.
Article in English | MEDLINE | ID: mdl-32485849

ABSTRACT

Nanotechnology-based approaches hold substantial potential to avoid chemoresistance and minimize side effects. In this work, we have used biocompatible iron oxide magnetic nanoparticles (MNPs) called MF66 and functionalized with the antineoplastic drug doxorubicin (DOX) against MDA-MB-231 cells. Electrostatically functionalized MNPs showed effective uptake and DOX linked to MNPs was more efficiently retained inside the cells than free DOX, leading to cell inactivation by mitotic catastrophe, senescence and apoptosis. Both effects, uptake and cytotoxicity, were demonstrated by different assays and videomicroscopy techniques. Likewise, covalently functionalized MNPs using three different linkers-disulfide (DOX-S-S-Pyr, called MF66-S-S-DOX), imine (DOX-I-Mal, called MF66-I-DOX) or both (DOX-I-S-S-Pyr, called MF66-S-S-I-DOX)-were also analysed. The highest cell death was detected using a linker sensitive to both pH and reducing environment (DOX-I-S-S-Pyr). The greatest success of this study was to detect also their activity against breast cancer stem-like cells (CSC) from MDA-MB-231 and primary breast cancer cells derived from a patient with a similar genetic profile (triple-negative breast cancer). In summary, these nanoformulations are promising tools as therapeutic agent vehicles, due to their ability to produce efficient internalization, drug delivery, and cancer cell inactivation, even in cancer stem-like cells (CSCs) from patients.

6.
Cancers (Basel) ; 11(7)2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31295963

ABSTRACT

Controlled delivery of multiple chemotherapeutics can improve the effectiveness of treatments and reduce side effects and relapses. Here in, we used albumin-stabilized gold nanoclusters modified with doxorubicin and SN38 (AuNCs-DS) as combined therapy for cancer. The chemotherapeutics are conjugated to the nanostructures using linkers that release them when exposed to different internal stimuli (Glutathione and pH). This system has shown potent antitumor activity against breast and pancreatic cancer cells. Our studies indicate that the antineoplastic activity observed may be related to the reinforced DNA damage generated by the combination of the drugs. Moreover, this system presented antineoplastic activity against mammospheres, a culturing model for cancer stem cells, leading to an efficient reduction of the number of oncospheres and their size. In summary, the nanostructures reported here are promising carriers for combination therapy against cancer and particularly to cancer stem cells.

7.
Breast Cancer Res ; 17: 66, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25968050

ABSTRACT

INTRODUCTION: Tumor cells can effectively be killed by heat, e.g. by using magnetic hyperthermia. The main challenge in the field, however, is the generation of therapeutic temperatures selectively in the whole tumor region. We aimed to improve magnetic hyperthermia of breast cancer by using innovative nanoparticles which display a high heating potential and are functionalized with a cell internalization and a chemotherapeutic agent to increase cell death. METHODS: The superparamagnetic iron oxide nanoparticles (MF66) were electrostatically functionalized with either Nucant multivalent pseudopeptide (N6L; MF66-N6L), doxorubicin (DOX; MF66-DOX) or both (MF66-N6LDOX). Their cytotoxic potential was assessed in a breast adenocarcinoma cell line MDA-MB-231. Therapeutic efficacy was analyzed on subcutaneous MDA-MB-231 tumor bearing female athymic nude mice. RESULTS: All nanoparticle variants showed an excellent heating potential around 500 W/g Fe in the alternating magnetic field (AMF, conditions: H=15.4 kA/m, f=435 kHz). We could show a gradual inter- and intracellular release of the ligands, and nanoparticle uptake in cells was increased by the N6L functionalization. MF66-DOX and MF66-N6LDOX in combination with hyperthermia were more cytotoxic to breast cancer cells than the respective free ligands. We observed a substantial tumor growth inhibition (to 40% of the initial tumor volume, complete tumor regression in many cases) after intratumoral injection of the nanoparticles in vivo. The proliferative activity of the remaining tumor tissue was distinctly reduced. CONCLUSION: The therapeutic effects of breast cancer magnetic hyperthermia could be strongly enhanced by the combination of MF66 functionalized with N6L and DOX and magnetic hyperthermia. Our approach combines two ways of tumor cell killing (magnetic hyperthermia and chemotherapy) and represents a straightforward strategy for translation into the clinical practice when injecting nanoparticles intratumorally.


Subject(s)
Antineoplastic Agents/administration & dosage , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Ferric Compounds/chemistry , Hyperthermia, Induced/methods , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Animals , Apoptosis , Breast Neoplasms/diagnosis , Cell Line, Tumor , Disease Models, Animal , Doxorubicin/administration & dosage , Drug Delivery Systems , Drug Liberation , Female , Humans , Hyperthermia, Induced/adverse effects , Metal Nanoparticles/adverse effects , Mice , Mice, Nude , X-Ray Microtomography , Xenograft Model Antitumor Assays
8.
J Nanobiotechnology ; 13: 16, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25880445

ABSTRACT

BACKGROUND: Different superparamagnetic iron oxide nanoparticles have been tested for their potential use in cancer treatment, as they enter into cells with high effectiveness, do not induce cytotoxicity, and are retained for relatively long periods of time inside the cells. We have analyzed the interaction, internalization and biocompatibility of dimercaptosuccinic acid-coated superparamagnetic iron oxide nanoparticles with an average diameter of 15 nm and negative surface charge in MCF-7 breast cancer cells. RESULTS: Cells were incubated with dimercaptosuccinic acid-coated superparamagnetic iron oxide nanoparticles for different time intervals, ranging from 0.5 to 72 h. These nanoparticles showed efficient internalization and relatively slow clearance. Time-dependent uptake studies demonstrated the maximum accumulation of dimercaptosuccinic acid-coated superparamagnetic iron oxide nanoparticles after 24 h of incubation, and afterwards they were slowly removed from cells. Superparamagnetic iron oxide nanoparticles were internalized by energy dependent endocytosis and localized in endosomes. Transmission electron microscopy studies showed macropinocytosis uptake and clathrin-mediated internalization depending on the nanoparticles aggregate size. MCF-7 cells accumulated these nanoparticles without any significant effect on cell morphology, cytoskeleton organization, cell cycle distribution, reactive oxygen species generation and cell viability, showing a similar behavior to untreated control cells. CONCLUSIONS: All these findings indicate that dimercaptosuccinic acid-coated superparamagnetic iron oxide nanoparticles have excellent properties in terms of efficiency and biocompatibility for application to target breast cancer cells.


Subject(s)
Breast Neoplasms/metabolism , Coated Materials, Biocompatible/metabolism , Ferric Compounds/metabolism , Magnetite Nanoparticles/chemistry , Succimer/metabolism , Breast/cytology , Breast/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Coated Materials, Biocompatible/chemistry , Cytoskeleton/drug effects , Endocytosis , Endosomes/metabolism , Female , Ferric Compounds/chemistry , Humans , Pinocytosis , Succimer/chemistry
9.
Nanotechnology ; 26(13): 135101, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25760138

ABSTRACT

Many therapeutic applications of magnetic nanoparticles involve the local administration of nanometric iron oxide based materials as seeds for magnetothermia or drug carriers. A simple and widespread way of controlling the process using x-ray computed tomography (CT) scanners is desirable. The combination of iron and bismuth in one entity will increase the atenuation of x-rays, offering such a possibility. In order to check this possibility core-shell nanocrystals of iron oxide@bismuth oxide have been synthesized by an aqueous route and stabilized in water by polyethylene glycol (PEG), and we have evaluated their ability to generate contrast by CT and magnetic resonance imaging (MRI) to measure the radiopacity and proton relaxivities using phantoms. High-resolution scanning transmission electron microscopy (STEM) revealed that the material consists of a highly crystalline 8 nm core of maghemite and a 1 nm shell of bismuth atoms either isolated or clustered on the nanocrystal's surface. The comparison of µCT and MRI images of mice acquired in the presence of the contrast shows that when local accumulations of the magnetic nanoparticles take place, CT images are more superior in the localization of the magnetic nanoparticles than MRI images, which results in magnetic field inhomogeneity artifacts.

10.
Nanomedicine ; 10(4): 733-43, 2014 May.
Article in English | MEDLINE | ID: mdl-24333592

ABSTRACT

We have performed a series of in vitro tests proposed for the reliable assessment of safety associated with nanoparticles-cell interaction. A thorough analysis of toxicity of three different coating iron oxide nanoparticles on HeLa cells has been carried out including, methyl thiazol tetrazolium bromide (MTT) and Trypan blue exclusion tests, cell morphology observation by optical and Scanning Electron Microscopy (SEM), study of cytoskeletal components, analysis of cell cycle and the presence of reactive oxygen species (ROS). We have quantified magnetic nanoparticle internalization, determined possible indirect cell damages and related it to the nanoparticle coating. The results confirm a very low toxicity of the analyzed iron oxide nanoparticles into HeLa cells by multiple assays and pave the way for a more successful cancer diagnostic and treatment without secondary effects. FROM THE CLINICAL EDITOR: In this paper, three different iron oxide nanoparticles are studied and compared from the standpoint of safety and toxicity in HeLa cells, demonstrating low toxicity for each preparation, and paving the way to potential future clinical applications.


Subject(s)
Ferric Compounds , Magnetite Nanoparticles/chemistry , Cytoskeleton/metabolism , Cytoskeleton/ultrastructure , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , HeLa Cells , Humans , Magnetite Nanoparticles/ultrastructure , Reactive Oxygen Species/metabolism
11.
ACS Nano ; 4(4): 2095-103, 2010 Apr 27.
Article in English | MEDLINE | ID: mdl-20355739

ABSTRACT

Development of nanosized materials to enhance the image contrast between the normal and diseased tissue and/or to indicate the status of organ functions or blood flow is essential in nuclear magnetic resonance imaging (MRI). Here we describe a contrast agent based on a new iron oxide design (superparamagnetic iron oxide clusters embedded in antiferromagnetic iron oxide porous nanorods). We show as a proof-of-concept that aqueous colloidal suspensions containing these particles show enhanced-proton relaxivities (i.e., enhanced MRI contrast capabilities). A remarkable feature of this new design is that large scale production is possible since aqueous-based routes are used, and porosity and iron oxide superparamagnetic clusters are directly developed from a single phase. We have also proved with the help of a simple model that the physical basis behind the increase in relaxivities lies on both the increase of dipolar field (interactions within iron oxide clusters) and the decrease of proton-cluster distance (porosity favors the close contact between protons and clusters). Finally, a list of possible steps to follow to enhance capabilities of this contrast agent is also included (partial coating with noble metals to add extra sensing capacity and chemical functionality, to increase the amount of doping while simultaneously carrying out cytotoxicity studies, or to find conditions to further decrease the size of the nanorods and to enhance their stability).


Subject(s)
Contrast Media/chemistry , Ferric Compounds/chemistry , Magnetic Resonance Imaging , Nanotubes/chemistry , Cell Survival/drug effects , Colloids , Contrast Media/toxicity , Ferric Compounds/toxicity , HeLa Cells , Humans , Magnetics , Porosity , Spectroscopy, Mossbauer
12.
Nanotechnology ; 20(11): 115103, 2009 Mar 18.
Article in English | MEDLINE | ID: mdl-19420433

ABSTRACT

The internalization and biocompatibility of iron oxide nanoparticles surface functionalized with four differently charged carbohydrates have been tested in the human cervical carcinoma cell line (HeLa). Neutral, positive, and negative iron oxide nanoparticles were obtained by coating with dextran, aminodextran, heparin, and dimercaptosuccinic acid, resulting in colloidal suspensions stable at pH 7 with similar aggregate size. No intracellular uptake was detected in cells incubated with neutral charged nanoparticles, while negative particles showed different behaviour depending on the nature of the coating. Thus, dimercaptosuccinic-coated nanoparticles showed low cellular uptake with non-toxic effects, while heparin-coated particles showed cellular uptake only at high nanoparticle concentrations and induced abnormal mitotic spindle configurations. Finally, cationic magnetic nanoparticles show excellent properties for possible in vivo biomedical applications such as cell tracking by magnetic resonance imaging (MRI) and cancer treatment by hyperthermia: (i) they enter into cells with high effectiveness, and are localized in endosomes; (ii) they can be easily detected inside cells by optical microscopy, (iii) they are retained for relatively long periods of time, and (iv) they do not induce any cytotoxicity.


Subject(s)
Endocytosis , Ferric Compounds/metabolism , Magnetics , Nanoparticles/chemistry , Neoplasms/pathology , Cell Death , HeLa Cells , Humans , Hydrogen-Ion Concentration , Microtubules/metabolism , Nanoparticles/ultrastructure , Neoplasms/metabolism , Spectroscopy, Fourier Transform Infrared , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...