Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Nat Commun ; 15(1): 3282, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627380

ABSTRACT

Exposure to pathogens throughout a lifetime influences immunity and organ function. Here, we explore how the systemic host-response to bacterial urinary tract infection (UTI) induces tissue-specific alterations to the mammary gland. Utilizing a combination of histological tissue analysis, single cell transcriptomics, and flow cytometry, we identify that mammary tissue from UTI-bearing mice displays collagen deposition, enlarged ductal structures, ductal hyperplasia with atypical epithelial transcriptomes and altered immune composition. Bacterial cells are absent in the mammary tissue and blood of UTI-bearing mice, therefore, alterations to the distal mammary tissue are mediated by the systemic host response to local infection. Furthermore, broad spectrum antibiotic treatment resolves the infection and restores mammary cellular and tissue homeostasis. Systemically, unresolved UTI correlates with increased plasma levels of the metalloproteinase inhibitor, TIMP1, which controls extracellular matrix remodeling and neutrophil function. Treatment of nulliparous and post-lactation UTI-bearing female mice with a TIMP1 neutralizing antibody, restores mammary tissue normal homeostasis, thus providing evidence for a link between the systemic host response during UTI and mammary gland alterations.


Subject(s)
Mammary Glands, Animal , Urinary Tract Infections , Animals , Female , Mice , Collagen , Extracellular Matrix/physiology , Homeostasis
2.
J Exp Clin Cancer Res ; 43(1): 84, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493157

ABSTRACT

BACKGROUND: How platelets interact with and influence the tumor microenvironment (TME) remains poorly characterized. METHODS: We compared the presence and participation of platelets in the TME of two tumors characterized by highly different TME, PyMT AT-3 mammary tumors and B16F1 melanoma. RESULTS: We show that whereas firmly adherent platelets continuously line tumor vessels of both AT-3 and B16F1 tumors, abundant extravascular stromal clusters of platelets from thrombopoietin-independent origin were present only in AT-3 mammary tumors. We further show that platelets influence the angiogenic and inflammatory profiles of AT-3 and B16F1 tumors, though with very different outcomes according to tumor type. Whereas thrombocytopenia increased bleeding in both tumor types, it further caused severe endothelial degeneration associated with massive vascular leakage, tumor swelling, and increased infiltration of cytotoxic cells, only in AT-3 tumors. CONCLUSIONS: These results indicate that while platelets are integral components of solid tumors, their localization and origin in the TME, as well as their impact on its shaping, are tumor type-dependent.


Subject(s)
Mammary Neoplasms, Animal , Tumor Microenvironment , Animals , Humans
3.
J Clin Periodontol ; 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38430050

ABSTRACT

AIM: To assess the prevalence of severe periodontitis based on the population-based CONSTANCES cohort using a validated self-reported questionnaire. MATERIALS AND METHODS: Individuals were selected from the adult population in France using a random sampling scheme. Analyses were restricted to those invited in 2013-2014 who completed the periodontal health questionnaire at the 2017 follow-up. The risk of severe periodontitis was assessed using the periodontal screening score (PESS) and weighting coefficients were applied to provide representative results in the general French population. RESULTS: The study included 19,859 participants (9204 men, mean age: 52.8 ± 12.6 years). Based on a PESS ≥ 5, 7106 participants were at risk of severe periodontitis, corresponding to a weighted prevalence of 31.6% (95% confidence interval: 30.6%-32.7%). This prevalence was higher among participants aged 55 and over, those with lower socio-economic status as well as current smokers, e-cigarette users and heavy drinkers. Among individuals at risk of severe periodontitis, only 18.8% (17.3%-20.4%) thought they had gum disease, although 50.5% (48.6%-52.5%) reported that their last dental visit was less than 6 months. CONCLUSIONS: The present survey indicates that (1) self-reported severe periodontitis is highly prevalent with marked disparities between groups in the general French adult population, and (2) periodontitis could frequently be under-diagnosed given the low awareness.

4.
Cancers (Basel) ; 16(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38339316

ABSTRACT

For over a century, early researchers sought to study biological organisms in a laboratory setting, leading to the generation of both in vitro and in vivo model systems. Patient-derived models of cancer (PDMCs) have more recently come to the forefront of preclinical cancer models and are even finding their way into clinical practice as part of functional precision medicine programs. The PDMC Consortium, supported by the Division of Cancer Biology in the National Cancer Institute of the National Institutes of Health, seeks to understand the biological principles that govern the various PDMC behaviors, particularly in response to perturbagens, such as cancer therapeutics. Based on collective experience from the consortium groups, we provide insight regarding PDMCs established both in vitro and in vivo, with a focus on practical matters related to developing and maintaining key cancer models through a series of vignettes. Although every model has the potential to offer valuable insights, the choice of the right model should be guided by the research question. However, recognizing the inherent constraints in each model is crucial. Our objective here is to delineate the strengths and limitations of each model as established by individual vignettes. Further advances in PDMCs and the development of novel model systems will enable us to better understand human biology and improve the study of human pathology in the lab.

5.
PLoS One ; 18(12): e0295408, 2023.
Article in English | MEDLINE | ID: mdl-38055674

ABSTRACT

AIMS: IgE type immunoglobulins and their specific effector cells, mast cells (MCs), are associated with abdominal aortic aneurysm (AAA) progression. In parallel, immunoglobulin-producing B cells, organised in tertiary lymphoid organs (TLOs) within the aortic wall, have also been linked to aneurysmal progression. We aimed at investigating the potential role and mechanism linking local MCs, TLO B cells, and IgE production in aneurysmal progression. METHODS AND RESULTS: Through histological assays conducted on human surgical samples from AAA patients, we uncovered that activated MCs were enriched at sites of unhealed haematomas, due to subclinical aortic wall fissuring, in close proximity to adventitial IgE+ TLO B cells. Remarkably, in vitro the IgEs deriving from these samples enhanced MC production of IL-4, a cytokine which favors IgE class-switching and production by B cells. Finally, the role of MCs in aneurysmal progression was further analysed in vivo in ApoE-/- mice subjected to angiotensin II infusion aneurysm model, through MC-specific depletion after the establishment of dissecting aneurysms. MC-specific depletion improved intramural haematoma healing and reduced aneurysmal progression. CONCLUSIONS: Our data suggest that MC located close to aortic wall fissures are activated by adventitial TLO B cell-produced IgEs and participate to their own activation by providing support for further IgE synthesis through IL-4 production. By preventing prompt repair of aortic subclinical fissures, such a runaway MC activation loop could precipitate aneurysmal progression, suggesting that MC-targeting treatments may represent an interesting adjunctive therapy for reducing AAA progression.


Subject(s)
Aortic Aneurysm, Abdominal , Mast Cells , Humans , Mice , Animals , Mast Cells/metabolism , Interleukin-4/metabolism , Mice, Knockout, ApoE , Aortic Aneurysm, Abdominal/pathology , Immunoglobulin E/metabolism , Disease Models, Animal , Aorta, Abdominal/pathology , Angiotensin II/metabolism , Mice, Inbred C57BL
6.
Periodontol 2000 ; 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37997210

ABSTRACT

In spite of intensive research efforts driving spectacular advances in terms of prevention and treatments, cardiovascular diseases (CVDs) remain a leading health burden, accounting for 32% of all deaths (World Health Organization. "Cardiovascular Diseases (CVDs)." WHO, February 1, 2017, https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)). Cardiovascular diseases are a group of disorders affecting the heart and blood vessels. They encompass a collection of different conditions, among which atherosclerotic cardiovascular disease (ASCVD) is the most prevalent. CVDs caused by atherosclerosis, that is, ASCVD, are particularly fatal: with heart attack and stroke being together the most prevalent cause of death in the world. To reduce the health burden represented by ASCVD, it is urgent to identify the nature of the "residual risk," beyond the established risk factors (e.g., hypertension) and behavioral factors already maximally targeted by drugs and public health campaigns. Remarkably, periodontitis is increasingly recognized as an independent cardiovascular risk factor.

7.
Elife ; 122023 08 07.
Article in English | MEDLINE | ID: mdl-37549051

ABSTRACT

Effective neutrophil migration to sites of inflammation is crucial for host immunity. A coordinated cascade of steps allows intravascular leukocytes to counteract the shear stress, transmigrate through the endothelial layer, and move toward the extravascular, static environment. Those events are tightly orchestrated by integrins, but, while the molecular mechanisms leading to their activation have been characterized, the regulatory pathways promoting their detachment remain elusive. In light of this, it has long been known that platelet-endothelial cell adhesion molecule (Pecam1, also known as CD31) deficiency blocks leukocyte transmigration at the level of the outer vessel wall, yet the associated cellular defects are controversial. In this study, we combined an unbiased proteomic study with in vitro and in vivo single-cell tracking in mice to study the dynamics and role of CD31 during neutrophil migration. We found that CD31 localizes to the uropod of migrating neutrophils along with closed ß2-integrin and is required for essential neutrophil actin/integrin polarization. Accordingly, the uropod of Pecam1-/- neutrophils is unable to detach from the extracellular matrix, while antagonizing integrin binding to extracellular matrix components rescues this in vivo migratory defect. Conversely, we showed that sustaining CD31 co-signaling actively favors uropod detachment and effective migration of extravasated neutrophils to sites of inflammation in vivo. Altogether, our results suggest that CD31 acts as a molecular rheostat controlling integrin-mediated adhesion at the uropod of egressed neutrophils, thereby triggering their detachment from the outer vessel wall to reach the inflammatory sites.


Subject(s)
Neutrophils , Platelet Endothelial Cell Adhesion Molecule-1 , Animals , Mice , CD18 Antigens/metabolism , Cell Adhesion/physiology , Inflammation/metabolism , Integrins/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Proteomics , Signal Transduction , Cell Movement
8.
Proc Natl Acad Sci U S A ; 120(36): e2303859120, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37639593

ABSTRACT

Recurrent chromosomal rearrangements found in rhabdomyosarcoma (RMS) produce the PAX3-FOXO1 fusion protein, which is an oncogenic driver and a dependency in this disease. One important function of PAX3-FOXO1 is to arrest myogenic differentiation, which is linked to the ability of RMS cells to gain an unlimited proliferation potential. Here, we developed a phenotypic screening strategy for identifying factors that collaborate with PAX3-FOXO1 to block myo-differentiation in RMS. Unlike most genes evaluated in our screen, we found that loss of any of the three subunits of the Nuclear Factor Y (NF-Y) complex leads to a myo-differentiation phenotype that resembles the effect of inactivating PAX3-FOXO1. While the transcriptomes of NF-Y- and PAX3-FOXO1-deficient RMS cells bear remarkable similarity to one another, we found that these two transcription factors occupy nonoverlapping sites along the genome: NF-Y preferentially occupies promoters, whereas PAX3-FOXO1 primarily binds to distal enhancers. By integrating multiple functional approaches, we map the PAX3 promoter as the point of intersection between these two regulators. We show that NF-Y occupies CCAAT motifs present upstream of PAX3 to function as a transcriptional activator of PAX3-FOXO1 expression in RMS. These findings reveal a critical upstream role of NF-Y in the oncogenic PAX3-FOXO1 pathway, highlighting how a broadly essential transcription factor can perform tumor-specific roles in governing cellular state.


Subject(s)
Rhabdomyosarcoma , CCAAT-Binding Factor/genetics , Cell Differentiation/genetics , Chromosome Aberrations , Rhabdomyosarcoma/genetics , Transcription Factors
9.
Heart ; 110(2): 132-139, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37463732

ABSTRACT

OBJECTIVE: Despite recent advances in surgical and interventional techniques, knowledge on the management of carcinoid heart disease (CHD) remains limited. In a cohort of patients with liver metastases of midgut neuroendocrine tumours (NETs), we aimed to describe the perioperative management and short-term outcomes of CHD. METHODS: From January 2003 to June 2022, consecutive patients with liver metastases of midgut NETs and severe CHD (severe valve disease with symptoms and/or right ventricular enlargement) were included at Beaujon and Bichat hospitals. All patients underwent clinical evaluation and echocardiography. RESULTS: Out of 43 (16%) consecutive patients with severe CHD and liver metastases of midgut NETs, 79% presented with right-sided heart failure. Tricuspid valve replacement was performed in 26 (53%) patients including 19 (73%) cases of combined pulmonary valve replacement. The 30-day postoperative mortality rate was high (19%), and preoperative heart failure was associated with worse survival (p=0.02). Epicardial pacemakers were systematically implanted in operated patients and 25% were permanently paced. A postoperative positive right ventricular remodelling was observed (p<0.001). A greater myofibroblastic infiltration was observed in pulmonary versus tricuspid valves (p<0.001), suggesting that they may have been explanted at an earlier stage of the disease than the tricuspid valve, with therefore potential for evolution. CONCLUSIONS: We observed a high postoperative mortality rate and baseline right-sided heart failure was associated with worse outcome. In surviving patients, a positive right ventricular remodelling was observed. Prospective, multicentre studies are warranted to better define the management strategy and to identify biomarkers associated with outcome in CHD.


Subject(s)
Carcinoid Heart Disease , Heart Failure , Heart Valve Prosthesis Implantation , Liver Neoplasms , Neuroendocrine Tumors , Humans , Carcinoid Heart Disease/complications , Heart Valve Prosthesis Implantation/methods , Neuroendocrine Tumors/surgery , Neuroendocrine Tumors/complications , Prospective Studies , Ventricular Remodeling , Heart Failure/complications , Liver Neoplasms/complications
10.
J Am Soc Nephrol ; 34(7): 1207-1221, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37022108

ABSTRACT

SIGNIFICANCE STATEMENT: Kidney-derived thrombopoietin (TPO) increases myeloid cell and platelet production during antibody-mediated chronic kidney disease (AMCKD) in a mouse model, exacerbating chronic thromobinflammation in microvessels. The effect is mirrored in patients with extracapillary glomerulonephritis associated with thromboinflammation, TGF ß -dependent glomerulosclerosis, and increased bioavailability of TPO. Neutralization of TPO in mice normalized hematopoiesis, reduced chronic thromboinflammation, and ameliorated renal disease. The findings suggest that TPO is a relevant biomarker and a promising therapeutic target for patients with CKD and other chronic thromboinflammatory diseases.Neutralization of TPO in mice normalized hematopoiesis, reduced chronic thromboinflammation, and ameliorated renal disease. The findings suggest that TPO is a relevant biomarker and a promising therapeutic target for patients with CKD and other chronic thromboinflammatory diseases. BACKGROUND: Chronic thromboinflammation provokes microvascular alterations and rarefaction, promoting organ dysfunction in individuals with various life-threatening diseases. Hematopoietic growth factors (HGFs) released by the affected organ may sustain emergency hematopoiesis and fuel the thromboinflammatory process. METHODS: Using a murine model of antibody-mediated chronic kidney disease (AMCKD) and pharmacological interventions, we comprehensively monitored the response to injury in the circulating blood, urine, bone marrow, and kidney. RESULTS: Experimental AMCKD was associated with chronic thromboinflammation and the production of HGFs, especially thrombopoietin (TPO), by the injured kidney, which stimulated and skewed hematopoiesis toward myelo-megakaryopoiesis. AMCKD was characterized by vascular and kidney dysfunction, TGF ß -dependent glomerulosclerosis, and microvascular rarefaction. In humans, extracapillary glomerulonephritis is associated with thromboinflammation, TGF ß -dependent glomerulosclerosis, and increased bioavailability of TPO. Analysis of albumin, HGF, and inflammatory cytokine levels in sera from patients with extracapillary glomerulonephritis allowed us to identify treatment responders. Strikingly, TPO neutralization in the experimental AMCKD model normalized hematopoiesis, reduced chronic thromboinflammation, and ameliorated renal disease. CONCLUSION: TPO-skewed hematopoiesis exacerbates chronic thromboinflammation in microvessels and worsens AMCKD. TPO is both a relevant biomarker and a promising therapeutic target in humans with CKD and other chronic thromboinflammatory diseases.


Subject(s)
Glomerulonephritis , Renal Insufficiency, Chronic , Thrombosis , Humans , Mice , Animals , Thrombopoietin/metabolism , Thrombopoietin/pharmacology , Receptors, Thrombopoietin , Inflammation , Thromboinflammation , Hematopoiesis/physiology , Antibodies/pharmacology , Kidney/metabolism , Renal Insufficiency, Chronic/etiology , Transforming Growth Factor beta/pharmacology
11.
J Neurointerv Surg ; 15(12): 1207-1211, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36878688

ABSTRACT

BACKGROUND: The first-pass complete recanalization by mechanical thrombectomy (MT) for the treatment of stroke remains limited due to the poor integration of the clot within current devices. Aspiration can help retrieval of the main clot but fails to prevent secondary embolism in the distal arterial territory. The dense meshes of extracellular DNA, recently described in stroke-related clots, might serve as an anchoring platform for MT devices. We aimed to evaluate the potential of a DNA-reacting surface to aid the retention of both the main clot and small fragments within the thrombectomy device to improve the potential of MT procedures. METHODS: Device-suitable alloy samples were coated with 15 different compounds and put in contact with extracellular DNA or with human peripheral whole blood, to compare their binding to DNA versus blood elements in vitro. Clinical-grade MT devices were coated with two selected compounds and evaluated in functional bench tests to study clot retrieval efficacy and quantify distal emboli using an M1 occlusion model. RESULTS: Binding properties of samples coated with all compounds were increased for DNA (≈3-fold) and decreased (≈5-fold) for blood elements, as compared with the bare alloy samples in vitro. Functional testing showed that surface modification with DNA-binding compounds improved clot retrieval and significantly reduced distal emboli during experimental MT of large vessel occlusion in a three-dimensional model. CONCLUSION: Our results suggest that clot retrieval devices coated with DNA-binding compounds can considerably improve the outcome of the MT procedures in stroke patients.


Subject(s)
Stroke , Thrombosis , Humans , Treatment Outcome , Thrombectomy/methods , Thrombosis/therapy , Stroke/surgery , Alloys , DNA
12.
Cancer Cell ; 41(3): 434-449, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36917949

ABSTRACT

Activated fibroblasts in tumors, or cancer-associated fibroblasts (CAFs), have become a popular research area over the past decade. As important players in many aspects of tumor biology, with functions ranging from collagen deposition to immunosuppression, CAFs have been the target of clinical and pre-clinical studies that have revealed their potential pro- and anti-tumorigenic dichotomy. In this review, we describe the important role of CAFs in the tumor microenvironment and the technological advances that made these discoveries possible, and we detail the models that are currently available for CAF investigation. Additionally, we present evidence to support the value of encompassing CAF investigation as a future therapeutic avenue alongside immune and cancer cells while highlighting the challenges that must be addressed for successful clinical translation of new findings.


Subject(s)
Cancer-Associated Fibroblasts , Neoplasms , Humans , Neoplasms/pathology , Fibroblasts/pathology , Cancer-Associated Fibroblasts/pathology , Carcinogenesis/pathology , Immune Tolerance , Tumor Microenvironment
15.
Sci Rep ; 12(1): 17628, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271122

ABSTRACT

We evaluated the contribution of artificial intelligence in predicting the risk of acute cellular rejection (ACR) using early plasma levels of soluble CD31 (sCD31) in combination with recipient haematosis, which was measured by the ratio of arterial oxygen partial pressure to fractional oxygen inspired (PaO2/FiO2) and respiratory SOFA (Sequential Organ Failure Assessment) within 3 days of lung transplantation (LTx). CD31 is expressed on endothelial cells, leukocytes and platelets and acts as a "peace-maker" at the blood/vessel interface. Upon nonspecific activation, CD31 can be cleaved, released, and detected in the plasma (sCD31). The study included 40 lung transplant recipients, seven (17.5%) of whom experienced ACR. We modelled the plasma levels of sCD31 as a nonlinear dependent variable of the PaO2/FiO2 and respiratory SOFA over time using multivariate and multimodal models. A deep convolutional network classified the time series models of each individual associated with the risk of ACR to each individual in the cohort.


Subject(s)
Endothelial Cells , Lung Transplantation , Humans , Artificial Intelligence , Blood Gas Analysis , Oxygen
16.
Hum Mol Genet ; 30(18): 1711-1720, 2021 08 28.
Article in English | MEDLINE | ID: mdl-33909043

ABSTRACT

Trichothiodystrophy (TTD) is a rare hereditary neurodevelopmental disorder defined by sulfur-deficient brittle hair and nails and scaly skin, but with otherwise remarkably variable clinical features. The photosensitive TTD (PS-TTD) forms exhibits in addition to progressive neuropathy and other features of segmental accelerated aging and is associated with impaired genome maintenance and transcription. New factors involved in various steps of gene expression have been identified for the different non-photosensitive forms of TTD (NPS-TTD), which do not appear to show features of premature aging. Here, we identify alanyl-tRNA synthetase 1 and methionyl-tRNA synthetase 1 variants as new gene defects that cause NPS-TTD. These variants result in the instability of the respective gene products alanyl- and methionyl-tRNA synthetase. These findings extend our previous observations that TTD mutations affect the stability of the corresponding proteins and emphasize this phenomenon as a common feature of TTD. Functional studies in skin fibroblasts from affected individuals demonstrate that these new variants also impact on the rate of tRNA charging, which is the first step in protein translation. The extension of reduced abundance of TTD factors to translation as well as transcription redefines TTD as a syndrome in which proteins involved in gene expression are unstable.


Subject(s)
Alanine-tRNA Ligase/genetics , Methionine-tRNA Ligase/genetics , Trichothiodystrophy Syndromes/genetics , Alanine-tRNA Ligase/metabolism , Child , Enzyme Stability/genetics , Female , Humans , Methionine-tRNA Ligase/metabolism , Trichothiodystrophy Syndromes/enzymology , Trichothiodystrophy Syndromes/pathology , Whole Genome Sequencing
18.
Eur Heart J ; 42(18): 1760-1769, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33580685

ABSTRACT

AIMS: The rapid endothelialization of bare metal stents (BMS) is counterbalanced by inflammation-induced neointimal growth. Drug-eluting stents (DES) prevent leukocyte activation but impair endothelialization, delaying effective device integration into arterial walls. Previously, we have shown that engaging the vascular CD31 co-receptor is crucial for endothelial and leukocyte homeostasis and arterial healing. Furthermore, we have shown that a soluble synthetic peptide (known as P8RI) acts like a CD31 agonist. The aim of this study was to evaluate the effect of CD31-mimetic metal stent coating on the in vitro adherence of endothelial cells (ECs) and blood elements and the in vivo strut coverage and neointimal growth. METHODS AND RESULTS: We produced Cobalt Chromium discs and stents coated with a CD31-mimetic peptide through two procedures, plasma amination or dip-coating, both yielding comparable results. We found that CD31-mimetic discs significantly reduced the extent of primary human coronary artery EC and blood platelet/leukocyte activation in vitro. In vivo, CD31-mimetic stent properties were compared with those of DES and BMS by coronarography and microscopy at 7 and 28 days post-implantation in pig coronary arteries (n = 9 stents/group/timepoint). Seven days post-implantation, only CD31-mimetic struts were fully endothelialized with no activated platelets/leukocytes. At day 28, neointima development over CD31-mimetic stents was significantly reduced compared to BMS, appearing as a normal arterial media with the absence of thrombosis contrary to DES. CONCLUSION: CD31-mimetic coating favours vascular homeostasis and arterial wall healing, preventing in-stent stenosis and thrombosis. Hence, such coatings seem to improve the metal stent biocompatibility.


Subject(s)
Drug-Eluting Stents , Neointima , Animals , Coronary Vessels , Endothelial Cells , Inflammation/prevention & control , Neointima/prevention & control , Prosthesis Design , Stents , Swine
19.
Transplant Proc ; 53(2): 746-749, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33549347

ABSTRACT

BACKGROUND: Antibody-mediated rejection (AMR) is a major cause of graft loss. The development of donor-specific antibodies (DSAs) directed against the allogeneic HLA molecules expressed by the graft also leads to accelerated arteriosclerosis. CD31 is a protein expressed on endothelial and immune cells, ensuring homeostasis at this interface. When strong immune stimulation occurs, the regulatory function of CD31 is lost owing to cleavage of its extracellular portion. P8RI, a synthetic peptide that binds to the ectodomain of CD31, is able to restore the CD31 immunomodulatory function. In this study, we hypothesized that CD31 could represent an attractive molecular target in AMR and investigated whether P8RI could prevent the development of vascular antibody-mediated lesions. MATERIALS AND METHODS: A rat model of orthotopic aortic allograft was used, and P8RI was administered for 28 days. Circulating DSAs were quantified to assess the alloimmune humoral response, and histologic and immunohistochemical analyses of aortic allografts were performed to estimate antibody-mediated lesions in the allograft. RESULTS: Aorta-allografted rats receiving P8RI developed fewer DSAs than control animals (mean fluorescence intensity 344 vs 741). The density of nuclei in the media (3.4 x 10-5 vs 2.2 x 10-5 nuclei/px2) and media surface area (2.33 x 106 vs 2.02 x 106 px2) were higher in animals treated with P8RI than in control animals. CONCLUSIONS: These data support a therapeutic potential for molecules able to restore the CD31 signaling to fight AMR. P8RI, an agonist synthetic peptide targeting CD31, might prevent DSA production and have a beneficial effect in limiting arterial antibody-mediated lesions. CD31 agonists may become therapeutic tools to prevent and treat solid organ transplant arteriosclerosis.


Subject(s)
Allografts/immunology , Aorta/transplantation , Graft Rejection/prevention & control , Isoantibodies/immunology , Platelet Endothelial Cell Adhesion Molecule-1/agonists , Animals , Disease Models, Animal , Graft Rejection/immunology , Male , Peptides/pharmacology , Rats , Transplantation, Homologous
20.
Stroke ; 52(2): 677-686, 2021 01.
Article in English | MEDLINE | ID: mdl-33412905

ABSTRACT

BACKGROUND AND PURPOSE: Beyond aneurysmal occlusion, metallic flow diverters (FDs) can induce an adverse endovascular reaction due to the foreignness of metal devices, hampering FD endothelialization across the aneurysm neck, and arterial healing of intracranial aneurysms. Here, we evaluated the potential benefits of an FD coating mimicking CD31, a coreceptor critically involved in endothelial function and endovascular homeostasis, on the endothelialization of FDs implanted in vivo. METHODS: Nitinol FD (Silk Vista Baby) and flat disks were dip-coated with a CD31-mimetic peptide via an intermediate layer of polydopamine. Disks were used to assess the reaction of endothelial cells and blood elements in vitro. An aneurysm rabbit model was used to compare in vivo effects on the arterial wall of CD31-mimetic-coated (CD31-mimetic, n=6), polydopamine-coated (polydopamine, n=6), and uncoated FDs (bare, n=5) at 4 weeks post-FD implantation. In addition, long-term safety was assessed at 12 weeks. RESULTS: In vitro, CD31-mimetic coated disks displayed reduced adhesion of blood elements while favoring endothelial cell attachment and confluence, compared to bare and polydopamine disks. Strikingly, in vivo, the neoarterial wall formed over the CD31-mimetic-FD struts at the aneurysm neck was characteristic of an arterial tunica media, with continuous differentiated endothelium covering a significantly thicker layer of collagen and smooth muscle cells as compared to the controls. The rates of angiographic complete occlusion and covered branch arterial patency were similar in all 3 groups. CONCLUSIONS: CD31-mimetic coating favors the colonization of metallic endovascular devices with endothelial cells displaying a physiological phenotype while preventing the adhesion of platelets and leukocytes. These biological properties lead to a rapid and improved endothelialization of the neoarterial wall at the aneurysm neck. CD31-mimetic coating could therefore represent a valuable strategy for FD biocompatibility improvement and aneurysm healing.


Subject(s)
Cerebral Arteries , Drug-Eluting Stents , Intracranial Aneurysm/therapy , Platelet Endothelial Cell Adhesion Molecule-1/therapeutic use , Alloys , Angiography , Animals , Biocompatible Materials , Blood Vessel Prosthesis , Drug-Eluting Stents/adverse effects , Endothelial Cells/drug effects , Indoles/administration & dosage , Indoles/therapeutic use , Intracranial Aneurysm/diagnostic imaging , Male , Platelet Endothelial Cell Adhesion Molecule-1/adverse effects , Polymers/administration & dosage , Polymers/therapeutic use , Rabbits , Tunica Intima
SELECTION OF CITATIONS
SEARCH DETAIL
...