Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mech Ageing Dev ; 211: 111778, 2023 04.
Article in English | MEDLINE | ID: mdl-36716826

ABSTRACT

Glaucoma is a complex neurodegenerative disease of the optic nerve that leads to irreversible sight loss. Lowering intraocular pressure (IOP) medically or surgically represents the mainstay of treatment but despite adequate treatment optic nerve function can continue to deteriorate leading to blindness. There is significant clinical and experimental evidence that oxidative stress is involved in the pathogenesis of glaucoma. Decreasing the formation of lipid peroxidation products or scavenging them chemically could be beneficial in limiting the deleterious effects of oxidative stress in glaucoma. A solution to control the susceptibility of PUFAs to noxious lipid peroxidation reactions is by regioselective deuteration. Deuterium incorporated into PUFAs at bis-allylic positions (D-PUFAs) inhibits the rate-limiting step of lipid peroxidation. In this study, we have shown that Tenon's ocular fibroblasts from glaucoma patients have significantly increased basal oxidative stress compared to non-glaucomatous control patients. Furthermore, we have shown that deuterated polyunsaturated fatty acids (D-PUFAs) provide an enhanced rescue of menadione induced lipid peroxidation in both non-glaucomatous and glaucomatous Tenon's ocular fibroblasts using malondialdehyde (MDA) levels as a marker. Our study suggests that D-PUFAs may provide a potentially safe and effective method to reduce cytotoxic oxidative stress in glaucoma.


Subject(s)
Neurodegenerative Diseases , Humans , Oxidative Stress , Fatty Acids, Unsaturated , Antioxidants/pharmacology , Lipid Peroxidation
2.
Biomolecules ; 12(11)2022 11 15.
Article in English | MEDLINE | ID: mdl-36421707

ABSTRACT

Pseudoexfoliation glaucoma (XFG) is an aggressive form of secondary open angle glaucoma, characterised by the production of exfoliation material and is estimated to affect 30 million people worldwide. Activation of the TGF-ß pathway by TGF-ß1 has been implicated in the pathogenesis of pseudoexfoliation glaucoma. To further investigate the role of TGF-ß1 in glaucomatous changes in the trabecular meshwork (TM), we used RNA-Seq to determine TGF-ß1 induced changes in the transcriptome of normal human trabecular meshwork (HTM) cells. The main purpose of this study was to perform a hypothesis-independent RNA sequencing analysis to investigate genome-wide alterations in the transcriptome of normal HTMs stimulated with TGF-ß1 and investigate possible pathophysiological mechanisms driving XFG. Our results identified multiple differentially expressed genes including several genes known to be present in exfoliation material. Significantly altered pathways, biological processes and molecular functions included extracellular matrix remodelling, Hippo and Wnt pathways, the unfolded protein response, oxidative stress, and the antioxidant system. This cellular model of pseudoexfoliation glaucoma can provide insight into disease pathogenesis and support the development of novel therapeutic interventions.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , Humans , Trabecular Meshwork/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/metabolism , RNA/metabolism , Glaucoma/genetics , Glaucoma/metabolism , Sequence Analysis, RNA
3.
Int J Mol Sci ; 23(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36142127

ABSTRACT

Primary open angle glaucoma (POAG), a chronic optic neuropathy, remains the leading cause of irreversible blindness worldwide. It is driven in part by the pro-fibrotic cytokine transforming growth factor beta (TGF-ß) and leads to extracellular matrix remodelling at the lamina cribrosa of the optic nerve head. Despite an array of medical and surgical treatments targeting the only known modifiable risk factor, raised intraocular pressure, many patients still progress and develop significant visual field loss and eventual blindness. The search for alternative treatment strategies targeting the underlying fibrotic transformation in the optic nerve head and trabecular meshwork in glaucoma is ongoing. MicroRNAs are small non-coding RNAs known to regulate post-transcriptional gene expression. Extensive research has been undertaken to uncover the complex role of miRNAs in gene expression and miRNA dysregulation in fibrotic disease. MiR-29 is a family of miRNAs which are strongly anti-fibrotic in their effects on the TGF-ß signalling pathway and the regulation of extracellular matrix production and deposition. In this review, we discuss the anti-fibrotic effects of miR-29 and the role of miR-29 in ocular pathology and in the development of glaucomatous optic neuropathy. A better understanding of the role of miR-29 in POAG may aid in developing diagnostic and therapeutic strategies in glaucoma.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , MicroRNAs , Optic Nerve Diseases , Blindness , Fibrosis , Glaucoma/genetics , Glaucoma/metabolism , Glaucoma, Open-Angle/metabolism , Humans , Intraocular Pressure , MicroRNAs/genetics , Optic Nerve Diseases/genetics , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
4.
Appl Microbiol Biotechnol ; 106(18): 6003-6016, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35965289

ABSTRACT

Sophorolipids are glycolipid biosurfactants consisting of a carbohydrate sophorose head with a fatty acid tail and exist in either an acidic or lactonic form. Sophorolipids are gaining interest as potential cancer chemotherapeutics due to their inhibitory effects on a range of tumour cell lines. Currently, most anti-cancer studies reporting the effects of sophorolipids have focused on lactonic preparations with the effects of acidic sophorolipids yet to be elucidated. We produced a 94% pure acidic sophorolipid preparation which proved to be non-toxic to normal human colonic and lung cells. In contrast, we observed a dose-dependent reduction in viability of colorectal cancer lines treated with the same preparation. Acidic sophorolipids induced apoptosis and necrosis, reduced migration, and inhibited colony formation in all cancer cell lines tested. Furthermore, oral administration of 50 mg kg-1 acidic sophorolipids over 70 days to Apcmin+/- mice was well tolerated and resulted in an increased haematocrit, as well as reducing splenic size and red pulp area. Oral feeding did not affect tumour numbers or sizes in this model. This is the first study to show that acidic sophorolipids dose-dependently and specifically reduces colon cancer cell viability in addition to reducing tumour-associated bleeding in the Apcmin+/- mouse model. KEY POINTS: • Acidic sophorolipids are produced by yeast species such as Starmerella bombicola. • Acidic sophorolipids selectively killed colorectal cells with no effect on healthy gut epithelia. • Acidic sophorolipids reduced tumour-associated gut bleed in a colorectal mouse model.


Subject(s)
Colorectal Neoplasms , Oleic Acids , Animals , Colorectal Neoplasms/drug therapy , Glycolipids/pharmacology , Hematocrit , Humans , Mice
5.
Sci Rep ; 12(1): 9564, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35689009

ABSTRACT

Glaucoma is a complex neurodegenerative disease resulting in progressive optic neuropathy and is a leading cause of irreversible blindness worldwide. Primary open angle glaucoma (POAG) is the predominant form affecting 65.5 million people globally. Despite the prevalence of POAG and the identification of over 120 glaucoma related genetic loci, the underlaying molecular mechanisms are still poorly understood. The transforming growth factor beta (TGF-ß) signalling pathway is implicated in the molecular pathology of POAG. To gain a better understanding of the role TGF-ß2 plays in the glaucomatous changes to the molecular pathology in the trabecular meshwork, we employed RNA-Seq to delineate the TGF-ß2 induced changes in the transcriptome of normal primary human trabecular meshwork cells (HTM). We identified a significant number of differentially expressed genes and associated pathways that contribute to the pathogenesis of POAG. The differentially expressed genes were predominantly enriched in ECM regulation, TGF-ß signalling, proliferation/apoptosis, inflammation/wound healing, MAPK signalling, oxidative stress and RHO signalling. Canonical pathway analysis confirmed the enrichment of RhoA signalling, inflammatory-related processes, ECM and cytoskeletal organisation in HTM cells in response to TGF-ß2. We also identified novel genes and pathways that were affected after TGF-ß2 treatment in the HTM, suggesting additional pathways are activated, including Nrf2, PI3K-Akt, MAPK and HIPPO signalling pathways. The identification and characterisation of TGF-ß2 dependent differentially expressed genes and pathways in HTM cells is essential to understand the patho-physiology of glaucoma and to develop new therapeutic agents.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , Neurodegenerative Diseases , Cells, Cultured , Gene Expression Profiling , Glaucoma/pathology , Glaucoma, Open-Angle/drug therapy , Humans , Neurodegenerative Diseases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Trabecular Meshwork/metabolism , Transforming Growth Factor beta2/metabolism
6.
Biomolecules ; 11(8)2021 08 19.
Article in English | MEDLINE | ID: mdl-34439904

ABSTRACT

Glaucoma is a group of optic neuropathies characterised by the degeneration of retinal ganglion cells, resulting in damage to the optic nerve head (ONH) and loss of vision in one or both eyes. Increased intraocular pressure (IOP) is one of the major aetiological risk factors in glaucoma, and is currently the only modifiable risk factor. However, 30-40% of glaucoma patients do not present with elevated IOP and still proceed to lose vision. The pathophysiology of glaucoma is therefore not completely understood, and there is a need for the development of IOP-independent neuroprotective therapies to preserve vision. Neuroinflammation has been shown to play a key role in glaucoma and, specifically, the NLRP3 inflammasome, a key driver of inflammation, has recently been implicated. The NLRP3 inflammasome is expressed in the eye and its activation is reported in pre-clinical studies of glaucoma. Activation of the NLRP3 inflammasome results in IL-1ß processing. This pro inflammatory cytokine is elevated in the blood of glaucoma patients and is believed to drive neurotoxic inflammation, resulting in axon degeneration and the death of retinal ganglion cells (RGCs). This review discusses glaucoma as an inflammatory disease and evaluates targeting the NLRP3 inflammasome as a therapeutic strategy. A hypothetical mechanism for the action of the NLRP3 inflammasome in glaucoma is presented.


Subject(s)
Glaucoma/metabolism , Glaucoma/therapy , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Retinal Ganglion Cells/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Axons , Humans , Inflammation , Interleukin-1beta/metabolism , Mice , Neuroprotection , Reactive Oxygen Species , Receptors, Pattern Recognition , Risk Factors
7.
Article in English | MEDLINE | ID: mdl-28242666

ABSTRACT

The sophorolipid class of biosurfactants is finding increasing use in personal care as well as pharmaceutical products and has the potential to disrupt biofilm formation and inhibit the growth of a variety of clinically relevant organisms. In order to investigate potential biomedical applications of sophorolipids derived from nonpathogenic organisms, we fractionated and purified glycolipid biosurfactant sophorolipids produced by the yeast Starmerella bombicola, which yielded nonacetylated acidic C18:1 congeners that were essentially free from other contaminants (>95% purity). These acidic sophorolipids have antimicrobial activities against the nosocomial infective agents Enterococcus faecalis and Pseudomonas aeruginosa, with significant reductions in CFU at concentrations of as low as 5 mg ml-1 In addition, the sophorolipid showed similar effects against the same two bacterial strains when combined with kanamycin or cefotaxime. As a potential use of these sophorolipids is as a component of topically applied creams for the treatment of wound infections, it is clear that they must have no demonstrable adverse effect on wound healing. To assess this, we evaluated mammalian cell toxicity in vitro using viability tests, which revealed no adverse effect on either endothelial or keratinocyte-derived cell lines with sophorolipid concentrations of < 0.5 mg ml-1 In addition, in vivo experiments using a mouse skin wounding assay revealed that the time course of healing wounds was unaffected by the application of sophorolipid-containing creams, and histological examination of regenerated skin tissue confirmed that the healing process was similar to that observed for control animals, with no evidence of inflammation. These results are consistent with the suggestion that acidic sophorolipids can be used as a component of antimicrobial creams to reduce the risk of wound infection during healing.


Subject(s)
Anti-Bacterial Agents/pharmacology , Enterococcus faecalis/growth & development , Glycolipids/pharmacology , Pseudomonas aeruginosa/growth & development , Wound Healing/drug effects , Adjuvants, Pharmaceutic/pharmacology , Animals , Cefotaxime/pharmacology , Cells, Cultured , Human Umbilical Vein Endothelial Cells , Humans , Kanamycin/pharmacology , Male , Mice , Mice, Inbred C57BL , Saccharomycetales/metabolism , Surface-Active Agents/pharmacology
8.
PLoS One ; 11(6): e0156845, 2016.
Article in English | MEDLINE | ID: mdl-27271048

ABSTRACT

Sophorolipids (SL) are amphiphilic biosurfactant molecules consisting of a disaccharide sophorose with one fatty acid at the C1 position and optional acetylation at the C6'and C6" positions. They exist in a closed ring lactonic (LSL) or open acidic (ASL) structure Sophorolipids are produced in crude mixtures in economically viable amounts by the yeast Starmerella bombicola and used in a variety of consumer products. Varying levels of anti- proliferative and anti-cancer activity of crude sophorolipid mixtures are described in a number of tumor cell lines in vitro. However, significant inter-study variation exists in the composition of sophorolipid species as well as other biologically active compounds in these mixtures, which makes interpretation of in vitro and in vivo studies difficult. We produced a 96% pure C18:1 lactonic sophorolipid that dose-dependently reduces the viability of colorectal cancer, as well as normal human colonic and lung cell lines in vitro. Oral administration of vehicle-only; or lactonic sophorolipids (50 mg/kg for 70 days), to Apcmin+/- mice resulted in an increase in the number (55.5 ± 3.3 vs 70.50 ± 7.8: p < 0.05) and size (modal size 2mm vs 4mm) of intestinal polyps. Lactonic administration resulted in a systematic effect via reduced hematocrit (49.5 ± 1.0 vs 28.2 ± 2.0 vs: p<0.03) and splenomegaly (0.56 ± 0.03g vs 0.71 ± 0.04g; p<0.01) confirming exacerbation of disease progression in this model.


Subject(s)
Colorectal Neoplasms/pathology , Glycolipids/pharmacology , Tumor Burden/drug effects , Animals , Ascomycota/chemistry , Caco-2 Cells , Cell Extracts/isolation & purification , Cell Extracts/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/genetics , Female , Genes, APC , HCT116 Cells , HT29 Cells , Humans , Male , Mice , Mice, Transgenic , Up-Regulation/drug effects
9.
PLoS One ; 9(4): e95694, 2014.
Article in English | MEDLINE | ID: mdl-24752613

ABSTRACT

Preventing pathological ocular angiogenesis is key to treating retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration. At present there is no small molecule drug on the market to target this process and hence there is a pressing need for developing novel small molecules that can replace or complement the present surgical and biologic therapies for these neovascular eye diseases. Previously, an antiangiogenic homoisoflavanone was isolated from the bulb of a medicinal orchid, Cremastra appendiculata. In this study, we present the synthesis of a novel homoisoflavanone isomer of this compound. Our compound, SH-11052, has antiproliferative activity against human umbilical vein endothelial cells, and also against more ocular disease-relevant human retinal microvascular endothelial cells (HRECs). Tube formation and cell cycle progression of HRECs were inhibited by SH-11052, but the compound did not induce apoptosis at effective concentrations. SH-11052 also decreased TNF-α induced p38 MAPK phosphorylation in these cells. Intriguingly, SH-11052 blocked TNF-α induced IκB-α degradation, and therefore decreased NF-κB nuclear translocation. It decreased the expression of NF-κB target genes and the pro-angiogenic or pro-inflammatory markers VCAM-1, CCL2, IL8, and PTGS2. In addition SH-11052 inhibited VEGF induced activation of Akt but not VEGF receptor autophosphorylation. Based on these results we propose that SH-11052 inhibits inflammation induced angiogenesis by blocking both TNF-α and VEGF mediated pathways, two major pathways involved in pathological angiogenesis. Synthesis of this novel homoisoflavanone opens the door to structure-activity relationship studies of this class of compound and further evaluation of its mechanism and potential to complement existing antiangiogenic drugs.


Subject(s)
Endothelial Cells/drug effects , Endothelial Cells/metabolism , Isoflavones/chemical synthesis , Isoflavones/pharmacology , Cell Cycle/drug effects , Cell Line , Cell Proliferation/drug effects , Erythropoietin/metabolism , Humans , Isoflavones/chemistry , Phosphorylation/drug effects , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/pharmacology , Vascular Endothelial Growth Factor A/pharmacology
10.
PLoS One ; 9(1): e84671, 2014.
Article in English | MEDLINE | ID: mdl-24416262

ABSTRACT

Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults. Early stage DR involves inflammation, vascular leakage, apoptosis of vascular cells and neurodegeneration. In this study, we hypothesized that cells derived from the stromal fraction of adipose tissue (ASC) could therapeutically rescue early stage DR features. Streptozotocin (STZ) induced diabetic athymic nude rats received single intravitreal injection of human ASC into one eye and saline into the other eye. Two months post onset of diabetes, administration of ASC significantly improved "b" wave amplitude (as measured by electroretinogram) within 1-3 weeks of injection compared to saline treated diabetic eyes. Subsequently, retinal histopathological evaluation revealed a significant decrease in vascular leakage and apoptotic cells around the retinal vessels in the diabetic eyes that received ASC compared to the eyes that received saline injection. In addition, molecular analyses have shown down-regulation in inflammatory gene expression in diabetic retina that received ASC compared to eyes that received saline. Interestingly, ASC were found to be localized near retinal vessels at higher densities than seen in age matched non-diabetic retina that received ASC. In vitro, ASC displayed sustained proliferation and decreased apoptosis under hyperglycemic stress. In addition, ASC in co-culture with retinal endothelial cells enhance endothelial survival and collaborate to form vascular networks. Taken together, our findings suggest that ASC are able to rescue the neural retina from hyperglycemia-induced degeneration, resulting in importantly improved visual function. Our pre-clinical studies support the translational development of adipose stem cell-based therapy for DR to address both retinal capillary and neurodegeneration.


Subject(s)
Adipose Tissue/cytology , Cell Transplantation , Diabetic Retinopathy/therapy , Animals , Apoptosis , Diabetic Retinopathy/pathology , Diabetic Retinopathy/physiopathology , Dose-Response Relationship, Drug , Endothelial Cells/cytology , Endothelial Cells/drug effects , Glucose/pharmacology , Humans , Intravitreal Injections , Rats , Retinal Vessels/physiopathology , Stromal Cells/drug effects , Stromal Cells/transplantation , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...