Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Brain ; 147(3): 839-848, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38123517

ABSTRACT

Intrathecal IgM production in multiple sclerosis is associated with a worse disease course. To investigate pathogenic relevance of autoreactive IgM in multiple sclerosis, CSF from two independent cohorts, including multiple sclerosis patients and controls, were screened for antibody binding to induced pluripotent stem cell-derived neurons and astrocytes, and a panel of CNS-related cell lines. IgM binding to a primitive neuro-ectodermal tumour cell line discriminated 10% of multiple sclerosis donors from controls. Transcriptomes of single IgM producing CSF B cells from patients with cell-binding IgM were sequenced and used to produce recombinant monoclonal antibodies for characterization and antigen identification. We produced five cell-binding recombinant IgM antibodies, of which one, cloned from an HLA-DR + plasma-like B cell, mediated antigen-dependent complement activation. Immunoprecipitation and mass spectrometry, and biochemical and transcriptome analysis of the target cells identified the iron transport scavenger protein SCARA5 as the antigen target of this antibody. Intrathecal injection of a SCARA5 antibody led to an increased T cell infiltration in an experimental autoimmune encephalomyelitis (EAE) model. CSF IgM might contribute to CNS inflammation in multiple sclerosis by binding to cell surface antigens like SCARA5 and activating complement, or by facilitating immune cell migration into the brain.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Immunoglobulin M , Multiple Sclerosis , Scavenger Receptors, Class A , Animals , Humans , Antibodies, Monoclonal , Cell Line, Tumor , Immunoglobulin M/cerebrospinal fluid , Membrane Transport Proteins , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/immunology , Scavenger Receptors, Class A/immunology
2.
Cell Rep Med ; 5(1): 101351, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38134930

ABSTRACT

Multiple sclerosis is a chronic inflammatory disease of the central nervous system. Whereas T cells are likely the main drivers of disease development, the striking efficacy of B cell-depleting therapies (BCDTs) underscore B cells' involvement in disease progression. How B cells contribute to multiple sclerosis (MS) pathogenesis-and consequently the precise mechanism of action of BCDTs-remains elusive. Here, we analyze the impact of BCDTs on the immune landscape in patients with MS using high-dimensional single-cell immunophenotyping. Algorithm-guided analysis reveals a decrease in circulating T follicular helper-like (Tfh-like) cells alongside increases in CD27 expression in memory T helper cells and Tfh-like cells. Elevated CD27 indicates disrupted CD27/CD70 signaling, as sustained CD27 activation in T cells leads to its cleavage. Immunohistological analysis shows CD70-expressing B cells at MS lesion sites. These results suggest that the efficacy of BCDTs may partly hinge upon the disruption of Th cell and B cell interactions.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/pathology , B-Lymphocytes , T-Lymphocytes, Helper-Inducer , Signal Transduction , Immunophenotyping
3.
Cell Rep Methods ; 3(7): 100533, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37533636

ABSTRACT

Single-cell transcriptomics allows characterization of cerebrospinal fluid (CSF) cells at an unprecedented level. Here, we report a robust cryopreservation protocol adapted for the characterization of fragile CSF cells by single-cell RNA sequencing (RNA-seq) in moderate- to large-scale studies. Fresh CSF was collected from twenty-one participants at two independent sites. Each CSF sample was split into two fractions: one was processed fresh, while the second was cryopreserved for months and profiled after thawing. B and T cell receptor sequencing was also performed. Our comparison of fresh and cryopreserved data from the same individuals demonstrates highly efficient recovery of all known CSF cell types. We find no significant difference in cell type proportions and cellular transcriptomes between fresh and cryopreserved cells. Results were comparable at both sites and with different single-cell sequencing chemistries. Cryopreservation did not affect recovery of T and B cell clonotype diversity. Our CSF cell cryopreservation protocol provides an important alternative to fresh processing of fragile CSF cells.


Subject(s)
Cryopreservation , Transcriptome , Humans , Transcriptome/genetics , Cryopreservation/methods , Gene Expression Profiling/methods , B-Lymphocytes
4.
Ther Adv Neurol Disord ; 16: 17562864221150040, 2023.
Article in English | MEDLINE | ID: mdl-36741352

ABSTRACT

Background: Natalizumab is a highly effective monoclonal antibody for the treatment of multiple sclerosis (MS), which can diffuse in different anatomical compartments, including cerebrospinal fluid (CSF) and milk. Objectives: Starting from incidental detection of natalizumab in the CSF of MS patients, the objective of this study was to develope a flow-cytometry-based assay and apply it to quantify natalizumab in body fluids, including milk collected from nursing patients over 180 days and in patients with neutralizing antibodies against natalizumab. Methods: CSF, milk and sera samples from patients with multiple sclerosis were tested by flow-cytometry for binding to a VLA-4 expressing cell line or to a control cell line. A standard curve was prepared by incubating the same cells with natalizumab at 50 µg/ml and serially diluted to 0.005 ng/ml. Binding specificity was confirmed using an anti-natalizumab neutralizing antibody. Results: Our assay was sensitive enough to detect natalizumab in CSF, with a lower detection limit of 1.5 ng/ml. Neutralizing antibodies against natalizumab inhibited binding to the cell line. In breastmilk, the peak concentration was observed during the first 2 weeks after infusion and the average concentration over the observation time was 173.3 ng/ml, with a trend toward increased average milk concentration over subsequent administrations. Conclusion: Routine use of such an assay would enable a better understanding of the safety of therapeutic antibody administration during pregnancy and lactation.

5.
J Neurol ; 270(1): 328-339, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36064814

ABSTRACT

BACKGROUND: The development of reproducible and sensitive outcome measures has been challenging in hereditary transthyretin (ATTRv) amyloidosis. Recently, quantification of intramuscular fat by magnetic resonance imaging (MRI) has proven as a sensitive marker in patients with other genetic neuropathies. The aim of this study was to investigate the role of muscle quantitative MRI (qMRI) as an outcome measure in ATTRv. METHODS: Calf- and thigh-centered multi-echo T2-weighted spin-echo and gradient-echo sequences were obtained in patients with ATTRv amyloidosis with polyneuropathy (n = 24) and healthy controls (n = 12). Water T2 (wT2) and fat fraction (FF) were calculated. Neurological assessment was performed in all ATTRv subjects. Quantitative MRI parameters were correlated with clinical and neurophysiological measures of disease severity. RESULTS: Quantitative imaging revealed significantly higher FF in lower limb muscles in patients with ATTRv amyloidosis compared to controls. In addition, wT2 was significantly higher in ATTRv patients. There was prominent involvement of the posterior compartment of the thighs. Noticeably, FF and wT2 did not exhibit a length-dependent pattern in ATTRv patients. MRI biomarkers correlated with previously validated clinical outcome measures, Polyneuropathy Disability scoring system, Neuropathy Impairment Score (NIS) and NIS-lower limb, and neurophysiological parameters of axonal damage regardless of age, sex, treatment and TTR mutation. CONCLUSIONS: Muscle qMRI revealed significant difference between ATTRv and healthy controls. MRI biomarkers showed high correlation with clinical and neurophysiological measures of disease severity making qMRI as a promising tool to be further investigated in longitudinal studies to assess its role at monitoring onset, progression, and therapy efficacy for future clinical trials on this treatable condition.


Subject(s)
Amyloid Neuropathies, Familial , Polyneuropathies , Humans , Cross-Sectional Studies , Amyloid Neuropathies, Familial/diagnostic imaging , Muscles , Polyneuropathies/diagnostic imaging , Polyneuropathies/etiology , Magnetic Resonance Imaging , Biomarkers , Prealbumin
6.
Acta Neuropathol ; 144(5): 1005-1025, 2022 11.
Article in English | MEDLINE | ID: mdl-36074148

ABSTRACT

Myasthenia gravis is an autoimmune disorder defined by muscle weakness and fatigability associated with antibodies against proteins of the neuromuscular junction (NMJ). The most common autoantibody target is the acetylcholine receptor (AChR). Three mechanisms have been postulated by which autoantibodies might interfere with neurotransmission: direct antagonism of the receptor, complement-mediated destruction of the postsynaptic membrane, and enhanced internalization of the receptor. It is very likely that more than one of these mechanisms act in parallel. Dissecting the mechanisms of autoantibody-mediated pathology requires patient-derived, monoclonal antibodies. Using membrane antigen capture activated cell sorting (MACACS), we isolated AChR-specific B cells from patients with myasthenia gravis, and produced six recombinant antibodies. All AChR-specific antibodies were hypermutated, including isotypes IgG1, IgG3, and IgG4, and recognized different subunits of the AChR. Despite clear binding, none of the individual antibodies showed significant antagonism of the AChR measured in an in vitro neuromuscular synapse model, or AChR-dependent complement activation, and they did not induce myasthenic signs in vivo. However, combinations of antibodies induced strong complement activation in vitro, and severe weakness in a passive transfer myasthenia gravis rat model, associated with NMJ destruction and complement activation in muscle. The strongest complement activation was mediated by combinations of antibodies targeting disparate subunits of the AChR, and such combinations also induced the formation of large clusters of AChR on the surface of live cells in vitro. We propose that synergy between antibodies of different epitope specificities is a fundamental feature of this disease, and possibly a general feature of complement-mediated autoimmune diseases. The importance of synergistic interaction between antibodies targeting different subunits of the receptor can explain the well-known discrepancy between serum anti-AChR titers and clinical severity, and has implications for therapeutic strategies currently under investigation.


Subject(s)
Myasthenia Gravis , Animals , Antibodies, Monoclonal , Autoantibodies , Cluster Analysis , Complement Activation , Complement System Proteins , Epitopes , Immunoglobulin G/metabolism , Myasthenia Gravis/pathology , Rats , Receptors, Cholinergic , Receptors, Complement
7.
Proc Natl Acad Sci U S A ; 119(31): e2205042119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35881799

ABSTRACT

Dimethyl fumarate (DMF) is an immunomodulatory treatment for multiple sclerosis (MS). Despite its wide clinical use, the mechanisms underlying clinical response are not understood. This study aimed to reveal immune markers of therapeutic response to DMF treatment in MS. For this purpose, we prospectively collected peripheral blood mononuclear cells (PBMCs) from a highly characterized cohort of 44 individuals with MS before and at 12 and 48 wk of DMF treatment. Single cells were profiled using high-dimensional mass cytometry. To capture the heterogeneity of different immune subsets, we adopted a bioinformatic multipanel approach that allowed cell population-cluster assignment of more than 50 different parameters, including lineage and activation markers as well as chemokine receptors and cytokines. Data were further analyzed in a semiunbiased fashion implementing a supervised representation learning approach to capture subtle longitudinal immune changes characteristic for therapy response. With this approach, we identified a population of memory T helper cells expressing high levels of neuroinflammatory cytokines (granulocyte-macrophage colony-stimulating factor [GM-CSF], interferon γ [IFNγ]) as well as CXCR3, whose abundance correlated with treatment response. Using spectral flow cytometry, we confirmed these findings in a second cohort of patients. Serum neurofilament light-chain levels confirmed the correlation of this immune cell signature with axonal damage. The identified cell population is expanded in peripheral blood under natalizumab treatment, substantiating a specific role in treatment response. We propose that depletion of GM-CSF-, IFNγ-, and CXCR3-expressing T helper cells is the main mechanism of action of DMF and allows monitoring of treatment response.


Subject(s)
Biomarkers, Pharmacological , Cytokines , Dimethyl Fumarate , Immunosuppressive Agents , Multiple Sclerosis , T-Lymphocytes, Helper-Inducer , Biomarkers, Pharmacological/metabolism , Cytokines/metabolism , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Interferon-gamma/metabolism , Lymphocyte Depletion , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Single-Cell Analysis , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/immunology
8.
EMBO Rep ; 23(7): e53956, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35548920

ABSTRACT

To investigate the class-dependent properties of anti-viral IgM antibodies, we use membrane antigen capture activated cell sorting to isolate spike-protein-specific B cells from donors recently infected with SARS-CoV-2, allowing production of recombinant antibodies. We isolate 20, spike-protein-specific antibodies of classes IgM, IgG, and IgA, none of which shows any antigen-independent binding to human cells. Two antibodies of class IgM mediate virus neutralization at picomolar concentrations, but this potency is lost following artificial switch to IgG. Although, as expected, the IgG versions of the antibodies appear to have lower avidity than their IgM parents, this is not sufficient to explain the loss of potency.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Viral , Humans , Immunoglobulin G , Immunoglobulin M
9.
Life (Basel) ; 12(3)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35330153

ABSTRACT

Charcot-Marie-Tooth (CMT) disease is the most commonly inherited neurological disorder. This study includes patients affected by CMT during regular follow-ups at the CMT clinic in Genova, a neuromuscular university center in the northwest of Italy, with the aim of describing the genetic distribution of CMT subtypes in our cohort and reporting a peculiar phenotype. Since 2004, 585 patients (447 index cases) have been evaluated at our center, 64.9% of whom have a demyelinating neuropathy and 35.1% of whom have an axonal neuropathy. A genetic diagnosis was achieved in 66% of all patients, with the following distribution: CMT1A (48%), HNPP (14%), CMT1X (13%), CMT2A (5%), and P0-related neuropathies (7%), accounting all together for 87% of all the molecularly defined neuropathies. Interestingly, we observe a peculiar phenotype with initial exclusive lower limb involvement as well as lower limb involvement that is maintained over time, which we have defined as a "strictly length-dependent" phenotype. Most patients with this clinical presentation shared variants in either HSPB1 or MPZ genes. The identification of distinctive phenotypes such as this one may help to address genetic diagnosis. In conclusion, we describe our diagnostic experiences as a multidisciplinary outpatient clinic, combining a gene-by-gene approach or targeted gene panels based on clinical presentation.

10.
Ann Neurol ; 91(5): 676-681, 2022 05.
Article in English | MEDLINE | ID: mdl-35170072

ABSTRACT

Treatment with dimethyl fumarate (DMF) leads to lymphopenia and infectious complications in a subset of patients with multiple sclerosis (MS). Here, we aimed to reveal immune markers of DMF-associated lymphopenia. This prospective observational study longitudinally assessed 31 individuals with MS by single-cell mass cytometry before and after 12 and 48 weeks of DMF therapy. Employing a neural network-based representation learning approach, we identified a CCR4-expressing T helper cell population negatively associated with relevant lymphopenia. CCR4-expressing T helper cells represent a candidate prognostic biomarker for the development of relevant lymphopenia in patients undergoing DMF treatment. ANN NEUROL 2022;91:676-681.


Subject(s)
Lymphopenia , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Dimethyl Fumarate/adverse effects , Humans , Immunosuppressive Agents/adverse effects , Lymphopenia/chemically induced , Multiple Sclerosis/chemically induced , Multiple Sclerosis/drug therapy , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Prospective Studies
11.
Brain ; 144(5): 1542-1550, 2021 06 22.
Article in English | MEDLINE | ID: mdl-33969391

ABSTRACT

After extensive evaluation, one-third of patients affected by polyneuropathy remain undiagnosed and are labelled as having chronic idiopathic axonal polyneuropathy, which refers to a sensory or sensory-motor, axonal, slowly progressive neuropathy of unknown origin. Since a sensory neuropathy/neuronopathy is identified in all patients with genetically confirmed RFC1 cerebellar ataxia, neuropathy, vestibular areflexia syndrome, we speculated that RFC1 expansions could underlie a fraction of idiopathic sensory neuropathies also diagnosed as chronic idiopathic axonal polyneuropathy. We retrospectively identified 225 patients diagnosed with chronic idiopathic axonal polyneuropathy (125 sensory neuropathy, 100 sensory-motor neuropathy) from our general neuropathy clinics in Italy and the UK. All patients underwent full neurological evaluation and a blood sample was collected for RFC1 testing. Biallelic RFC1 expansions were identified in 43 patients (34%) with sensory neuropathy and in none with sensory-motor neuropathy. Forty-two per cent of RFC1-positive patients had isolated sensory neuropathy or sensory neuropathy with chronic cough, while vestibular and/or cerebellar involvement, often subclinical, were identified at examination in 58%. Although the sensory ganglia are the primary pathological target of the disease, the sensory impairment was typically worse distally and symmetric, while gait and limb ataxia were absent in two-thirds of the cases. Sensory amplitudes were either globally absent (26%) or reduced in a length-dependent (30%) or non-length dependent pattern (44%). A quarter of RFC1-positive patients had previously received an alternative diagnosis, including Sjögren's syndrome, sensory chronic inflammatory demyelinating polyneuropathy and paraneoplastic neuropathy, while three cases had been treated with immune therapies.


Subject(s)
Polyneuropathies/genetics , Replication Protein C/genetics , Adult , Aged , DNA Repeat Expansion , Female , Humans , Male , Middle Aged
12.
Presse Med ; 50(2): 104068, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34033862

ABSTRACT

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. In recent years, many disease-modifying therapies (DMT) have been approved for MS treatment. For this reason, a profound knowledge of the characteristics and indications of the available compounds is required to tailor the therapeutic strategy to the individual patient characteristics. This should include the mechanism of action and pharmacokinetic of the drug, the safety and efficacy profile provided by clinical trials, as well as the understanding of possible side effects. Moreover, the evolving knowledge of the disease is paving the way to new and innovative therapeutic approaches, as well as the development of new biomarkers to monitor the therapeutic response and to guide the clinician's therapeutic choices. In this review we provide a comprehensive overview on currently approved therapies in MS and the emerging evidence-based strategies to adopt for initiating, monitoring, and eventually adapting a therapeutic regimen with DMT.


Subject(s)
Immunosuppressive Agents/therapeutic use , Multiple Sclerosis/drug therapy , Abnormalities, Drug-Induced/etiology , Abnormalities, Drug-Induced/prevention & control , Algorithms , Antibodies, Monoclonal, Humanized/therapeutic use , Cladribine/therapeutic use , Crotonates/therapeutic use , Dimethyl Fumarate/therapeutic use , Female , Fingolimod Hydrochloride/therapeutic use , Hematopoietic Stem Cell Transplantation , Humans , Hydroxybutyrates/therapeutic use , Immunologic Factors/therapeutic use , Indans/therapeutic use , Interferon-beta/therapeutic use , Male , Mitoxantrone/therapeutic use , Natalizumab/therapeutic use , Nitriles/therapeutic use , Oxadiazoles/therapeutic use , Pregnancy , Sphingosine 1 Phosphate Receptor Modulators/therapeutic use , Sphingosine-1-Phosphate Receptors/therapeutic use , Toluidines/therapeutic use
13.
Article in English | MEDLINE | ID: mdl-33589541

ABSTRACT

OBJECTIVE: To identify an MS-specific immune cell population by deep immune phenotyping and relate it to soluble signaling molecules in CSF. METHODS: We analyzed surface expression of 22 markers in paired blood/CSF samples from 39 patients using mass cytometry (cytometry by time of flight). We also measured the concentrations of 296 signaling molecules in CSF using proximity extension assay. Results were analyzed using highly automated unsupervised algorithmic informatics. RESULTS: Mass cytometry objectively identified a B-cell population characterized by the expression of CD49d, CD69, CD27, CXCR3, and human leukocyte antigen (HLA)-DR as clearly associated with MS. Concentrations of the B cell-related factors, notably FCRL2, were increased in MS CSF, especially in early stages of the disease. The B-cell trophic factor B cell activating factor (BAFF) was decreased in MS. Proteins involved in neural plasticity were also reduced in MS. CONCLUSION: When analyzed without a priori assumptions, both the soluble and the cellular compartments of the CSF in MS were characterized by markers related to B cells, and the strongest candidate for an MS-specific cell type has a B-cell phenotype.


Subject(s)
B-Cell Activating Factor/cerebrospinal fluid , B-Lymphocytes/cytology , Biomarkers/cerebrospinal fluid , Multiple Sclerosis/immunology , Adult , B-Lymphocytes/immunology , Biomarkers/analysis , Female , Humans , Male , Middle Aged , Phenotype
14.
Brain Behav ; 11(8): e01967, 2021 08.
Article in English | MEDLINE | ID: mdl-33615744

ABSTRACT

BACKGROUND: Fulminant inflammatory demyelination is a possible presentation of inflammatory demyelinating disorders, thus representing a potential stroke mimic especially in younger patients. AIMS OF THE STUDY: To describe clinical and diagnostic pitfalls in a case of fulminant inflammatory demyelination presenting with stroke-like symptoms in an elderly patient. METHODS: Case report and case-based review of the literature. RESULTS: A 67-year-old woman, who accessed the emergency room as suspect stroke for hyperacute onset of rapidly worsening speech impairment and drowsiness, was later diagnosed with a huge brain inflammatory demyelination. Clinical, laboratory, and neuroimaging tests did not allow to put a more specific diagnosis. Due to the rapidly deteriorating course, she received immunosuppression with benefit. CONCLUSION: This report is meant to highlight the diagnostic challenges connected with fulminant inflammatory demyelination, which sometime can resemble a stroke-in evolution and appear clinically unfitting for inclusion in any specific pathological entities within the broad-spectrum of inflammatory demyelinating disorders.


Subject(s)
Demyelinating Diseases , Encephalitis , Stroke , Aged , Brain , Demyelinating Diseases/diagnostic imaging , Female , Humans , Neuroimaging , Stroke/diagnostic imaging
16.
Mult Scler Relat Disord ; 44: 102326, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32615529

ABSTRACT

BACKGROUND: The genetic component of multiple sclerosis (MS) is now set to 200 autosomal common variants. However, it is unclear how genetic knowledge be clinically used in the differential diagnosis between MS and other inflammatory conditions like adult-onset postinfectious neurological syndromes (PINS). The aim of this study was to investigate whether PINS and MS have a shared genetic background using an updated polygenic risk scores. METHODS: Eighty-eight PINS patients have been consecutively recruited between 1996 and 2016 at Mondino Foundation of Pavia, diagnosed according to clinical, MRI and CSF findings and followed-up for several years. Patients were typed using Illumina array, and genotypes imputed using the 1000 Genomes Project reference panel. A weighted genetic risk score (wGRS) has been calculated based on autosomal MS risk loci derived from large-scale studies, and an HLA genetic burden (HLAGB) was also calculated on loci associated to MS. RESULTS: PINS occurred as an episode of myelitis in 44% of patients, encephalomyelitis in 44%, and encephalitis in remaining cases, with an involvement of peripheral nervous system in 41% of patients. Mean age of onset was 50.1 years, and female:male ratio was 1.4. Patients were followed-up for a mean of 7.2 years, and at last visit 55% had a low disability grade (mRS 0-1). Disease was monophasic in 67% of patients, relapsing in 18% and chronic-progressive in 15%. The wGRS of PINS cases was comparable to 370 healthy controls, while significantly lower compared to 907 bout-onset MS (BOMS) cases (wGRS= 20.9 vs 21.2; p<0.0001). The difference was even larger for PINS with peripheral nervous system involvement (wGRS=20.6) vs BOMS. CONCLUSION: The distinction between MS and PINS is not easy to make in clinical practice. However, our study shows that the new set of MS risk alleles does not confer increased susceptibility to PINS. These data support the importance to discriminate these cases from MS with pathophysiological and therapeutic implications.


Subject(s)
Multiple Sclerosis , Adult , Alleles , Female , Genotype , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Multiple Sclerosis/genetics , Syndrome
17.
Article in English | MEDLINE | ID: mdl-31753915

ABSTRACT

OBJECTIVE: To assess the prevalence and isotypes of anti-nodal/paranodal antibodies to nodal/paranodal proteins in a large chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) cohort, compare clinical features in seronegative vs seropositive patients, and gather evidence of their isotype-specific pathogenic role. METHODS: Antibodies to neurofascin-155 (Nfasc155), neurofascin-140/186 (Nfasc140/186), contactin-1 (CNTN1), and contactin-associated protein 1 (Caspr1) were detected with ELISA and/or cell-based assay. Antibody pathogenicity was tested by immunohistochemistry on skin biopsy, intraneural injection, and cell aggregation assay. RESULTS: Of 342 patients with CIDP, 19 (5.5%) had antibodies against Nfasc155 (n = 9), Nfasc140/186 and Nfasc155 (n = 1), CNTN1 (n = 3), and Caspr1 (n = 6). Antibodies were absent from healthy and disease controls, including neuropathies of different causes, and were mostly detected in patients with European Federation of Neurological Societies/Peripheral Nerve Society (EFNS/PNS) definite CIDP (n = 18). Predominant antibody isotypes were immunoglobulin G (IgG)4 (n = 13), IgG3 (n = 2), IgG1 (n = 2), or undetectable (n = 2). IgG4 antibody-associated phenotypes included onset before 30 years, severe neuropathy, subacute onset, tremor, sensory ataxia, and poor response to intravenous immunoglobulin (IVIG). Immunosuppressive treatments, including rituximab, cyclophosphamide, and methotrexate, proved effective if started early in IVIG-resistant IgG4-seropositive cases. Five patients with an IgG1, IgG3, or undetectable isotype showed clinical features indistinguishable from seronegative patients, including good response to IVIG. IgG4 autoantibodies were associated with morphological changes at paranodes in patients' skin biopsies. We also provided preliminary evidence from a single patient about the pathogenicity of anti-Caspr1 IgG4, showing their ability to penetrate paranodal regions and disrupt the integrity of the Nfasc155/CNTN1/Caspr1 complex. CONCLUSIONS: Our findings confirm previous data on the tight clinico-serological correlation between antibodies to nodal/paranodal proteins and CIDP. Despite the low prevalence, testing for their presence and isotype could ultimately be part of the diagnostic workup in suspected inflammatory demyelinating neuropathy to improve diagnostic accuracy and guide treatment. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that antibodies to nodal/paranodal proteins identify patients with CIDP (sensitivity 6%, specificity 100%).


Subject(s)
Autoantibodies/blood , Cell Adhesion Molecules, Neuronal/immunology , Cell Adhesion Molecules/immunology , Contactin 1/immunology , Immunoglobulin G/classification , Nerve Growth Factors/immunology , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/blood , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/immunology , Adult , Female , Humans , Male
18.
J Neurol ; 266(11): 2629-2645, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31278453

ABSTRACT

Mutations of myelin protein zero gene (MPZ) are found in 5% of Charcot-Marie-Tooth patients. In 2004, Shy et al. identified two main phenotypes associated with them: an early-onset subtype with mainly demyelinating features and a late-onset subgroup with prominent axonal impairment. We evaluated whether novel MPZ mutations described in literature during the last 14 years could still fit with this classification. We collected and revised reports of 69 novel MPZ mutations. Almost 90% of them could be alternatively classified as responsible for: (a) an early-onset phenotype, with first limitations starting before 3 years (2.5 ± 0.50 years), motor milestones delays, frequently severe course and upper limb MNCVs below 15 m/s; (b) late-onset neuropathy, with mean age of onset of 42.8 ± 1.5 years and mean upper limbs motor nerve conduction velocities (MNCVs) of 47.2 ± 1.4 m/s; (c) a phenotype more similar to typical CMT1A neuropathy, with onset during the 2nd decade, MNCV in the range of 15-30 m/s and slowly progressive course. The present work confirms that P0-related neuropathies may be separated into two main distinct phenotypes, while a third, relatively small, group comprehend patients carrying MPZ mutations and a childhood-onset disease, substantiating the subdivision into three groups proposed by Sanmaneechai et al. (Brain 138:3180-3192, 2015). Interestingly, during the last years, an increasing number of novel MPZ mutations causing a late-onset phenotype has been described, highlighting the clinical relevance of late-onset P0 neuropathies. Since the family history for neuropathy is often uncertain, due to the late disease onset, the number of patients carrying this genotype is probably underestimated.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Myelin P0 Protein/genetics , Age of Onset , Humans , Mutation , Phenotype
20.
Front Immunol ; 10: 829, 2019.
Article in English | MEDLINE | ID: mdl-31040853

ABSTRACT

Determining antigen specificity is vital for understanding B cell biology and for producing human monoclonal antibodies. We describe here a powerful method for identifying B cells that recognize membrane antigens expressed on cells. The technique depends on two characteristics of the interaction between a B cell and an antigen-expressing cell: antigen-receptor-mediated extraction of antigen from the membrane of the target cell, and B cell activation. We developed the method using influenza hemagglutinin as a model viral membrane antigen, and tested it using acetylcholine receptor (AChR) as a model membrane autoantigen. The technique involves co-culturing B cells with adherent, bioorthogonally labeled cells expressing GFP-tagged antigen, and sorting GFP-capturing, newly activated B cells. Hemagglutinin-specific B cells isolated this way from vaccinated human donors expressed elevated CD20, CD27, CD71, and CD11c, and reduced CD21, and their secreted antibodies blocked hemagglutination and neutralized viral infection. Antibodies cloned from AChR-capturing B cells derived from patients with myasthenia gravis bound specifically to the receptor on cell membrane. The approach is sensitive enough to detect antigen-specific B cells at steady state, and can be adapted for any membrane antigen.


Subject(s)
Antigens, Surface/immunology , B-Lymphocytes/immunology , Cell Separation/methods , Adult , Aged , Animals , Antigens, Surface/isolation & purification , Autoantigens/immunology , Autoantigens/isolation & purification , B-Lymphocyte Subsets/immunology , Cell Line, Tumor , Clone Cells , Epitopes, B-Lymphocyte/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunophenotyping , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Middle Aged , Myasthenia Gravis/immunology , Receptors, Cholinergic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...