Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters











Publication year range
1.
Elife ; 122024 Jun 18.
Article in English | MEDLINE | ID: mdl-38896450

ABSTRACT

The DNA damage response is critical for maintaining genome integrity and is commonly disrupted in the development of cancer. PPM1D (protein phosphatase Mg2+/Mn2+-dependent 1D) is a master negative regulator of the response; gain-of-function mutations and amplifications of PPM1D are found across several human cancers making it a relevant pharmacological target. Here, we used CRISPR/Cas9 screening to identify synthetic-lethal dependencies of PPM1D, uncovering superoxide dismutase-1 (SOD1) as a potential target for PPM1D-mutant cells. We revealed a dysregulated redox landscape characterized by elevated levels of reactive oxygen species and a compromised response to oxidative stress in PPM1D-mutant cells. Altogether, our results demonstrate a role for SOD1 in the survival of PPM1D-mutant leukemia cells and highlight a new potential therapeutic strategy against PPM1D-mutant cancers.


Subject(s)
Protein Phosphatase 2C , Superoxide Dismutase-1 , Protein Phosphatase 2C/metabolism , Protein Phosphatase 2C/genetics , Humans , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Cell Line, Tumor , Leukemia/genetics , CRISPR-Cas Systems , Oxidative Stress , Reactive Oxygen Species/metabolism , Synthetic Lethal Mutations , Mutation
2.
Science ; 385(6710): eado3867, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38900911

ABSTRACT

Using CRISPR-Cas9 nicking enzymes, we examined the interaction between the replication machinery and single-strand breaks, one of the most common forms of endogenous DNA damage. We show that replication fork collapse at leading-strand nicks generates resected single-ended double-strand breaks (seDSBs) that are repaired by homologous recombination (HR). If these seDSBs are not promptly repaired, arrival of adjacent forks creates double-ended DSBs (deDSBs), which could drive genomic scarring in HR-deficient cancers. deDSBs can also be generated directly when the replication fork bypasses lagging-strand nicks. Unlike deDSBs produced independently of replication, end resection at nick-induced seDSBs and deDSBs is BRCA1-independent. Nevertheless, BRCA1 antagonizes 53BP1 suppression of RAD51 filament formation. These results highlight distinctive mechanisms that maintain replication fork stability.


Subject(s)
BRCA1 Protein , DNA Breaks, Double-Stranded , DNA Breaks, Single-Stranded , DNA Replication , Rad51 Recombinase , Tumor Suppressor p53-Binding Protein 1 , Humans , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , CRISPR-Cas Systems , DNA Repair , Homologous Recombination , Rad51 Recombinase/metabolism , Recombinational DNA Repair , Tumor Suppressor p53-Binding Protein 1/metabolism
3.
Mol Cell ; 84(4): 659-674.e7, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38266640

ABSTRACT

Inactivating mutations in the BRCA1 and BRCA2 genes impair DNA double-strand break (DSB) repair by homologous recombination (HR), leading to chromosomal instability and cancer. Importantly, BRCA1/2 deficiency also causes therapeutically targetable vulnerabilities. Here, we identify the dependency on the end resection factor EXO1 as a key vulnerability of BRCA1-deficient cells. EXO1 deficiency generates poly(ADP-ribose)-decorated DNA lesions during S phase that associate with unresolved DSBs and genomic instability in BRCA1-deficient but not in wild-type or BRCA2-deficient cells. Our data indicate that BRCA1/EXO1 double-deficient cells accumulate DSBs due to impaired repair by single-strand annealing (SSA) on top of their HR defect. In contrast, BRCA2-deficient cells retain SSA activity in the absence of EXO1 and hence tolerate EXO1 loss. Consistent with a dependency on EXO1-mediated SSA, we find that BRCA1-mutated tumors show elevated EXO1 expression and increased SSA-associated genomic scars compared with BRCA1-proficient tumors. Overall, our findings uncover EXO1 as a promising therapeutic target for BRCA1-deficient tumors.


Subject(s)
BRCA1 Protein , Neoplasms , Humans , BRCA1 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , DNA Damage , DNA Repair , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , Homologous Recombination
4.
bioRxiv ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-37693622

ABSTRACT

The DNA damage response is critical for maintaining genome integrity and is commonly disrupted in the development of cancer. PPM1D (protein phosphatase, Mg2+/Mn2+ dependent 1D) is a master negative regulator of the response; gain-of-function mutations and amplifications of PPM1D are found across several human cancers making it a relevant pharmacologic target. Here, we used CRISPR/Cas9 screening to identify synthetic-lethal dependencies of PPM1D, uncovering superoxide dismutase-1 (SOD1) as a potential target for PPM1D-mutant cells. We revealed a dysregulated redox landscape characterized by elevated levels of reactive oxygen species and a compromised response to oxidative stress in PPM1D-mutant cells. Altogether, our results demonstrate the protective role of SOD1 against oxidative stress in PPM1D-mutant leukemia cells and highlight a new potential therapeutic strategy against PPM1D-mutant cancers.

6.
Nat Struct Mol Biol ; 30(1): 99-106, 2023 01.
Article in English | MEDLINE | ID: mdl-36564591

ABSTRACT

Nuclear actin-based movements have been shown to orchestrate clustering of DNA double-strand breaks (DSBs) into homology-directed repair domains. Here we describe multiscale three-dimensional genome reorganization following DNA damage and analyze the contribution of the nuclear WASP-ARP2/3-actin pathway toward chromatin topology alterations and pathologic repair. Hi-C analysis reveals genome-wide, DNA damage-induced chromatin compartment flips facilitated by ARP2/3 that enrich for open, A compartments. Damage promotes interactions between DSBs, which in turn facilitate aberrant, actin-dependent intra- and inter-chromosomal rearrangements. Our work establishes that clustering of resected DSBs into repair domains by nuclear actin assembly is coordinated with multiscale alterations in genome architecture that enable homology-directed repair while also increasing nonhomologous end-joining-dependent translocation frequency.


Subject(s)
Actins , Translocation, Genetic , Humans , Actins/metabolism , Polymerization , Chromatin , DNA End-Joining Repair , DNA Damage , DNA Repair
7.
Science ; 378(6623): 983-989, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36454826

ABSTRACT

Neurons harbor high levels of single-strand DNA breaks (SSBs) that are targeted to neuronal enhancers, but the source of this endogenous damage remains unclear. Using two systems of postmitotic lineage specification-induced pluripotent stem cell-derived neurons and transdifferentiated macrophages-we show that thymidine DNA glycosylase (TDG)-driven excision of methylcytosines oxidized with ten-eleven translocation enzymes (TET) is a source of SSBs. Although macrophage differentiation favors short-patch base excision repair to fill in single-nucleotide gaps, neurons also frequently use the long-patch subpathway. Disrupting this gap-filling process using anti-neoplastic cytosine analogs triggers a DNA damage response and neuronal cell death, which is dependent on TDG. Thus, TET-mediated active DNA demethylation promotes endogenous DNA damage, a process that normally safeguards cell identity but can also provoke neurotoxicity after anticancer treatments.


Subject(s)
DNA Breaks, Single-Stranded , DNA Demethylation , DNA Repair , Enhancer Elements, Genetic , Induced Pluripotent Stem Cells , Neurons , Thymine DNA Glycosylase , Cell Differentiation , Neurons/enzymology , 5-Methylcytosine/metabolism , Humans , Cell Transdifferentiation
8.
Mol Cell ; 82(19): 3538-3552.e5, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36075220

ABSTRACT

DNA becomes single stranded (ssDNA) during replication, transcription, and repair. Transiently formed ssDNA segments can adopt alternative conformations, including cruciforms, triplexes, and quadruplexes. To determine whether there are stable regions of ssDNA in the human genome, we utilized S1-END-seq to convert ssDNA regions to DNA double-strand breaks, which were then processed for high-throughput sequencing. This approach revealed two predominant non-B DNA structures: cruciform DNA formed by expanded (TA)n repeats that accumulate in microsatellite unstable human cancer cell lines and DNA triplexes (H-DNA) formed by homopurine/homopyrimidine mirror repeats common across a variety of cell lines. We show that H-DNA is enriched during replication, that its genomic location is highly conserved, and that H-DNA formed by (GAA)n repeats can be disrupted by treatment with a (GAA)n-binding polyamide. Finally, we show that triplex-forming repeats are hotspots for mutagenesis. Our results identify dynamic DNA secondary structures in vivo that contribute to elevated genome instability.


Subject(s)
DNA, Cruciform , Nylons , DNA/metabolism , DNA Breaks, Double-Stranded , DNA Replication , Humans , Nucleic Acid Conformation
9.
Mol Cell ; 82(7): 1359-1371.e9, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35216668

ABSTRACT

The chromatin-binding protein 53BP1 promotes DNA repair by orchestrating the recruitment of downstream effectors including PTIP, RIF1, and shieldin to DNA double-strand break sites. While we know how PTIP recognizes 53BP1, the molecular details of RIF1 recruitment to DNA-damage sites remains undefined. Here, we report that RIF1 is a phosphopeptide-binding protein that directly interacts with three phosphorylated 53BP1 epitopes. The RIF1-binding sites on 53BP1 share an essential LxL motif followed by two closely apposed phosphorylated residues. Simultaneous mutation of these sites on 53BP1 abrogates RIF1 accumulation into ionizing-radiation-induced foci, but surprisingly, only fully compromises 53BP1-dependent DNA repair when an alternative mode of shieldin recruitment to DNA-damage sites is also disabled. Intriguingly, this alternative mode of recruitment still depends on RIF1 but does not require its interaction with 53BP1. RIF1 therefore employs phosphopeptide recognition to promote DNA repair but also modifies shieldin action independently of 53BP1 binding.


Subject(s)
Phosphopeptides , Telomere-Binding Proteins , BRCA1 Protein/genetics , Carrier Proteins/metabolism , DNA/metabolism , DNA End-Joining Repair , DNA Repair , Phosphopeptides/genetics , Phosphopeptides/metabolism , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism
10.
Nat Commun ; 12(1): 3636, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140467

ABSTRACT

To identify approaches to target DNA repair vulnerabilities in cancer, we discovered nanomolar potent, selective, low molecular weight (MW), allosteric inhibitors of the polymerase function of DNA polymerase Polθ, including ART558. ART558 inhibits the major Polθ-mediated DNA repair process, Theta-Mediated End Joining, without targeting Non-Homologous End Joining. In addition, ART558 elicits DNA damage and synthetic lethality in BRCA1- or BRCA2-mutant tumour cells and enhances the effects of a PARP inhibitor. Genetic perturbation screening revealed that defects in the 53BP1/Shieldin complex, which cause PARP inhibitor resistance, result in in vitro and in vivo sensitivity to small molecule Polθ polymerase inhibitors. Mechanistically, ART558 increases biomarkers of single-stranded DNA and synthetic lethality in 53BP1-defective cells whilst the inhibition of DNA nucleases that promote end-resection reversed these effects, implicating these in the synthetic lethal mechanism-of-action. Taken together, these observations describe a drug class that elicits BRCA-gene synthetic lethality and PARP inhibitor synergy, as well as targeting a biomarker-defined mechanism of PARPi-resistance.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , DNA Repair/drug effects , DNA-Directed DNA Polymerase/genetics , Nucleic Acid Synthesis Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Synthetic Lethal Mutations/drug effects , Allosteric Regulation , Animals , Apoptosis/drug effects , Apoptosis/genetics , BRCA1 Protein/metabolism , BRCA2 Protein/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/radiation effects , DNA Damage/drug effects , DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/metabolism , Deoxyribonucleases/antagonists & inhibitors , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Female , Homologous Recombination/drug effects , Humans , Inhibitory Concentration 50 , Mice , Organoids/drug effects , Ovarian Neoplasms/genetics , Rats , Synthetic Lethal Mutations/genetics , Tumor Suppressor p53-Binding Protein 1/deficiency , Tumor Suppressor p53-Binding Protein 1/metabolism , DNA Polymerase theta
SELECTION OF CITATIONS
SEARCH DETAIL