Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 123(46): 9801-9808, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31644296

ABSTRACT

We investigate how isotopic labeling of the enzyme lactate dehydrogenase (LDH) affects its function. LDH is of special interest because there exists a line of residues spanning the protein that are involved in the transition state (TS) of the chemical reaction coordinate (so-called promoting vibration). Hence, studies have been carried out on this protein (as well as others) using labeled protein (so-called heavy protein) along with measurements of single turnover kcat yielding a KIE (=kcatlight/kcatheavy) aimed at understanding the effect of labeling generally and more specifically this line of residues. Here, it is shown that 13C, 15N, and 2H atom labeling of hhLDH (human heart) affects its internal structure which in turn affects its dynamics and catalytic mechanism. Spectral studies employing advanced FTIR difference spectroscopy show that the height of the electronic potential surface of the TS is lowered (probably by ground state destabilization) by labeling. Moreover, laser-induced T-jump relaxation kinetic spectroscopy shows that the microsecond to millisecond nuclear motions internal to the protein are affected by labeling. While the effects are small, they are sufficient to contribute to the observed KIE values as well or even more than promoting vibration effects.


Subject(s)
L-Lactate Dehydrogenase/metabolism , Biocatalysis , Humans , Hydrogen-Ion Concentration , Isotope Labeling , Kinetics , Lasers , Myocardium/enzymology , NAD/chemistry , NAD/metabolism , Pyruvates/chemistry , Pyruvates/metabolism , Spectroscopy, Fourier Transform Infrared
2.
J Phys Chem B ; 123(37): 7840-7851, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31437399

ABSTRACT

Yersinia Protein Tyrosine Phosphatase (YopH) is the most efficient enzyme among all known PTPases and relies on its catalytic loop movements for substrate binding and catalysis. Fluorescence, NMR, and UV resonance Raman (UVRR) techniques have been used to study the thermodynamic and dynamic properties of the loop motions. In this study, a computational approach based on the pathway refinement methods nudged elastic band (NEB) and harmonic Fourier beads (HFB) has been developed to provide structural interpretations for the experimentally observed kinetic processes. In this approach, the minimum potential energy pathways for the loop open/closure conformational changes were determined by NEB using a one-dimensional global coordinate. Two dimensional data analyses of the NEB results were performed as an efficient method to qualitatively evaluate the energetics of transitions along several specific physical coordinates. The free energy barriers for these transitions were then determined more precisely using the HFB method. Kinetic parameters were estimated from the energy barriers using transition state theory and compared against experimentally determined kinetic parameters. When the calculated energy barriers are calibrated by a simple "scaling factor", as have been done in our previous vibrational frequency calculations to explain the ligand frequency shift upon its binding to protein, it is possible to make structural interpretations of several observed enzyme dynamic rates. For example, the nanosecond kinetics observed by fluorescence anisotropy may be assigned to the translational motion of the catalytic loop and microsecond kinetics observed in fluorescence T-jump can be assigned to the loop backbone dihedral angle flipping. Furthermore, we can predict that a Trp354 conformational conversion associated with the loop movements would occur on the tens of nanoseconds time scale, to be verified by future UVRR T-jump studies.


Subject(s)
Molecular Dynamics Simulation , Protein Tyrosine Phosphatases/metabolism , Yersinia/enzymology , Biocatalysis , Protein Conformation , Protein Tyrosine Phosphatases/chemistry , Thermodynamics
3.
J Phys Chem B ; 123(19): 4230-4241, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31013084

ABSTRACT

Triosephosphate isomerase (TIM) catalyzes the interconversion between dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate (GAP) via an enediol(ate) intermediate. The active-site residue Glu165 serves as the catalytic base during catalysis. It abstracts a proton from C1 carbon of DHAP to form the reaction intermediate and donates a proton to C2 carbon of the intermediate to form product GAP. Our difference Fourier transform infrared spectroscopy studies on the yeast TIM (YeTIM)/phosphate complex revealed a C═O stretch band at 1706 cm-1 from the protonated Glu165 carboxyl group at pH 7.5, indicating that the p Ka of the catalytic base is increased by >3.0 pH units upon phosphate binding, and that the Glu165 carboxyl environment in the complex is still hydrophilic in spite of the increased p Ka. Hence, the results show that the binding of the phosphodianion group is part of the activation mechanism which involves the p Ka elevation of the catalytic base Glu165. The deprotonation kinetics of Glu165 in the µs to ms time range were determined via infrared (IR) T-jump studies on the YeTIM/phosphate and ("heavy enzyme") [U-13C,-15N]YeTIM/phosphate complexes. The slower deprotonation kinetics in the ms time scale is due to phosphate dissociation modulated by the loop motion, which slows down by enzyme mass increase to show a normal heavy enzyme kinetic isotope effect (KIE) ∼1.2 (i.e., slower rate in the heavy enzyme). The faster deprotonation kinetics in the tens of µs time scale is assigned to temperature-induced p Ka decrease, while phosphate is still bound, and it shows an inverse heavy enzyme KIE ∼0.89 (faster rate in the heavy enzyme). The IR static and T-jump spectroscopy provides atomic-level resolution of the catalytic mechanism because of its ability to directly observe the bond breaking/forming process.


Subject(s)
Glutamic Acid/chemistry , Protons , Saccharomyces cerevisiae Proteins/metabolism , Triose-Phosphate Isomerase/metabolism , Amino Acid Sequence , Bacteria , Base Sequence , Catalysis , Catalytic Domain , Dihydroxyacetone Phosphate/metabolism , Humans , Kinetics , Phosphates/metabolism , Planctomycetales/enzymology , Protein Binding , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/chemistry , Triose-Phosphate Isomerase/chemistry
4.
Math Biosci ; 313: 61-70, 2019 07.
Article in English | MEDLINE | ID: mdl-30935841

ABSTRACT

A general mathematical formula of basic enzyme reactions was derived with nearly no dependence on conditions nor assumptions on relaxation kinetic processes near equilibrium in a simple single-substrate-single-product enzyme reaction. The new formula gives precise relationships between the rate constants of the elementary reaction steps and the apparent relaxation rate constant, rather than the initial velocity that is generally used to determine enzymatic parameters according to the Michaelis-Menten theory. The present formula is shown to be complementary to the Michaelis-Menten formulae in a sense that the initial velocity and the relaxation rate constant data together could determine the enzyme-substrate dissociation constant KES, which has been usually conditionally approximated by the Michaelis constant KM within the framework of the Michaelis-Menten formulae. We also describe relaxation kinetics of enzyme reactions that include the conformational selection processes, in which only one enzymatic conformer among a conformational ensemble can bind with either the substrate or product. The present mathematical approaches, together with numerical computation analyses, suggested that the presence of conformational selection steps in enzymatic reactions can be experimentally detected simply by enzymatic assays with catalytic amounts of enzyme.


Subject(s)
Biochemical Phenomena , Enzymes/metabolism , Models, Theoretical , Kinetics
5.
J Phys Chem B ; 122(25): 6483-6490, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29860828

ABSTRACT

Oxamate and pyruvate are isoelectronic molecules. They both quench tryptophan fluorescence with Stern-Volmer constants of 16 and 20 M-1, respectively, which are comparable to that of arcrylamide, a commonly used probe for protein structure. On the other hand, it is well known that neither the carboxylate group of these molecules nor the amide group is a good quencher. To find the mechanism of the quenching by oxamate and pyruvate, density functional theory computations with a polarizable continuum model, solvation based on density, and explicit waters, were performed. Results indicate that both molecules can be an electron acceptor via photoinduced electron transfer. There are two requirements. First, the carboxylate and amide moieties must be in direct contact to bring about noticeable quenching. The conjugation between the amide (or the keto) group and the carboxylate group leads to a lower π* orbital, which is the lowest unoccupied molecular orbital (LUMO), and can then accept an electron from the excited tryptophan. Second, since oxamate and pyruvate ions have high electron density, hydrogen bonds with waters, which can be simulated by an explicit water model, are essential. Their LUMO energies are strongly influenced by water in aqueous solution. The above findings demonstrate how tryptophan fluorescence gets quenched in aqueous solution. The findings may be important in dealing with those problems where frontier orbitals are considered, especially with molecules having high electron density.


Subject(s)
Oxamic Acid/chemistry , Pyruvic Acid/chemistry , Tryptophan/chemistry , Electron Transport , Hydrogen Bonding , Quantum Theory , Spectrometry, Fluorescence , Water/chemistry
6.
J Phys Chem B ; 121(43): 10036-10045, 2017 11 02.
Article in English | MEDLINE | ID: mdl-28990791

ABSTRACT

Triosephosphate isomerase (TIM) catalyzes the interconversion between dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate (GAP), via an enediol(ate) intermediate. Determination of substrate population distribution in the TIM/substrate reaction mixture at equilibrium and characterization of the substrate-enzyme interactions in the Michaelis complex are ongoing efforts toward the understanding of the TIM reaction mechanism. By using isotope-edited difference Fourier transform infrared studies with unlabeled and 13C-labeled substrates at specific carbon(s), we are able to show that in the reaction mixture at equilibrium the keto DHAP is the dominant species and the populations of aldehyde GAP and enediol(ate) are very low, consistent with the results from previous X-ray structural and 13C NMR studies. Furthermore, within the DHAP side of the Michaelis complex, there is a set of conformational substates that can be characterized by the different C2═O stretch frequencies. The C2═O frequency differences reflect the different degree of the C2═O bond polarization due to hydrogen bonding from active site residues. The C2═O bond polarization has been considered as an important component for substrate activation within the Michaelis complex. We have found that in the enzyme-substrate reaction mixture with TIM from different organisms the number of substates and their population distribution within the DHAP side of the Michaelis complex may be different. These discoveries provide a rare opportunity to probe the interconversion dynamics of these DHAP substates and form the bases for the future studies to determine if the TIM-catalyzed reaction follows a simple linear reaction pathway, as previously believed, or follows parallel reaction pathways, as suggested in another enzyme system that also shows a set of substates in the Michaelis complex.


Subject(s)
Spectroscopy, Fourier Transform Infrared , Triose-Phosphate Isomerase/chemistry , Triose-Phosphate Isomerase/metabolism , Catalytic Domain , Dihydroxyacetone/chemistry , Glyceraldehyde 3-Phosphate/chemistry , Molecular Structure , Solutions , Substrate Specificity
7.
Biochemistry ; 56(28): 3587-3595, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28627164

ABSTRACT

The thermodynamics of substrate binding and enzymatic activity of a glycolytic enzyme, lactate dehydrogenase (LDH), from both porcine heart, phLDH (Sus scrofa; a mesophile), and mackerel icefish, cgLDH (Chamapsocephalus gunnari; a psychrophile), were investigated. Using a novel and quite sensitive fluorescence assay that can distinguish protein conformational changes close to and distal from the substrate binding pocket, a reversible global protein structural transition preceding the high-temperature transition (denaturation) was surprisingly found to coincide with a marked change in enzymatic activity for both LDHs. A similar reversible structural transition of the active site structure was observed for phLDH but not for cgLDH. An observed lower substrate binding affinity for cgLDH compared to that for phLDH was accompanied by a larger contribution of entropy to ΔG, which reflects a higher functional plasticity of the psychrophilic cgLDH compared to that of the mesophilic phLDH. The natural osmolyte, trimethylamine N-oxide (TMAO), increases stability and shifts all structural transitions to higher temperatures for both orthologs while simultaneously reducing catalytic activity. The presence of TMAO causes cgLDH to adopt catalytic parameters like those of phLDH in the absence of the osmolyte. Our results are most naturally understood within a model of enzyme dynamics whereby different conformations of the enzyme that have varied catalytic parameters (i.e., binding and catalytic proclivity) and whose population profiles are temperature-dependent and influenced by osmolytes interconvert among themselves. Our results also show that adaptation can be achieved by means other than gene mutations and complements the synchronic evolution of the cellular milieu.


Subject(s)
L-Lactate Dehydrogenase/metabolism , Thermodynamics , Adaptation, Physiological , Animals , Enzyme Stability , L-Lactate Dehydrogenase/chemistry , Methylamines/metabolism , NAD/metabolism , Perciformes , Protein Conformation , Protein Denaturation , Substrate Specificity , Swine
8.
Biophys J ; 112(9): 1852-1862, 2017 May 09.
Article in English | MEDLINE | ID: mdl-28494956

ABSTRACT

Enzymes are known to exhibit conformational flexibility. An important consequence of this flexibility is that the same enzyme reaction can occur via multiple reaction pathways on a reaction landscape. A model enzyme for the study of reaction landscapes is lactate dehydrogenase. We have previously used temperature-jump (T-jump) methods to demonstrate that the reaction landscape of lactate dehydrogenase branches at multiple points creating pathways with varied reactivity. A limitation of this previous work is that the T-jump method makes only small perturbations to equilibrium and may not report conclusively on all steps in a reaction. Therefore, interpreting T-jump results of lactate dehydrogenase kinetics has required extensive computational modeling work. Rapid mixing methods offer a complementary approach that can access large perturbations from equilibrium; however, traditional enzyme mixing methods like stopped-flow do not allow for the observation of fast protein dynamics. In this report, we apply a microfluidic rapid mixing device with a mixing time of <100 µs that allows us to study these fast dynamics and the catalytic redox step of the enzyme reaction. Additionally, we report UV absorbance and emission T-jump results with improved signal-to-noise ratio at fast times. The combination of mixing and T-jump results yields an unprecedented view of lactate dehydrogenase enzymology, confirming the timescale of substrate-induced conformational change and presence of multiple reaction pathways.


Subject(s)
L-Lactate Dehydrogenase/metabolism , Animals , Catalysis , Fluorescence Resonance Energy Transfer , Kinetics , L-Lactate Dehydrogenase/chemistry , Microfluidics , Myocardium/enzymology , NAD/chemistry , NAD/metabolism , Oxidation-Reduction , Protein Conformation , Swine
9.
Photochem Photobiol ; 93(5): 1193-1203, 2017 10.
Article in English | MEDLINE | ID: mdl-28391608

ABSTRACT

Fluorescence of Reduced Nicotinamide Adenine Dinucleotide (NADH) is extensively employed in studies of oxidoreductases. A substantial amount of static and kinetic work has focused on the binding of pyruvate or substrate mimic oxamate to the binary complex of lactate dehydrogenase (LDH)-NADH where substantial fluorescence quenching is typically observed. However, the quenching mechanism is not well understood limiting structural interpretation. Based on time-dependent density functional theory (TDDFT) computations with cam-B3LYP functional in conjunction with the analysis of previous experimental results, we propose that bound oxamate acts as an electron acceptor in the quenching of fluorescence of NADH in the ternary complex, where a charge transfer (CT) state characterized by excitation from the highest occupied molecular orbital (HOMO) of the nicotinamide moiety of NADH to the lowest unoccupied molecular orbital (LUMO) of oxamate exists close to the locally excited (LE) state involving only the nicotinamide moiety. Efficient quenching in the encounter complex like in pig heart LDH requires that oxamate forms a salt bridge with Arg-171 and hydrogen bonds with His-195, Thr-246 and Asn-140. Further structural rearrangement and loop closure, which also brings about another hydrogen bond between oxamate and Arg-109, will increase the rate of fluorescence quenching as well.


Subject(s)
L-Lactate Dehydrogenase/chemistry , NAD/chemistry , Oxamic Acid/chemistry , Animals , Crystallography, X-Ray , Fluorescence , Hydrogen Bonding , Myocardium/enzymology , Oxidation-Reduction , Swine
10.
Biochemistry ; 55(27): 3803-14, 2016 Jul 12.
Article in English | MEDLINE | ID: mdl-27319381

ABSTRACT

Laser-induced temperature-jump relaxation spectroscopy was used to study the active site mobile-loop dynamics found in the binding of the NADH nucleotide cofactor and oxamate substrate mimic to lactate dehydrogenase in Bacillus stearothermophilus thermophilic bacteria (bsLDH). The kinetic data can be best described by a model in which NADH can bind only to the open-loop apoenzyme, oxamate can bind only to the bsLDH·NADH binary complex in the open-loop conformation, and oxamate binding is followed by closing of the active site loop preventing oxamate unbinding. The open and closed states of the loop are in dynamic equilibrium and interconvert on the submillisecond time scale. This interconversion strongly accelerates with an increase in temperature because of significant enthalpy barriers. Binding of NADH to bsLDH results in minor changes of the loop dynamics and does not shift the open-closed equilibrium, but binding of the oxamate substrate mimic shifts this equilibrium to the closed state. At high excess oxamate concentrations where all active sites are nearly saturated with the substrate mimic, all active site mobile loops are mainly closed. The observed active-loop dynamics for bsLDH is very similar to that previously observed for pig heart LDH.


Subject(s)
Geobacillus stearothermophilus/enzymology , L-Lactate Dehydrogenase/chemistry , L-Lactate Dehydrogenase/metabolism , NAD/metabolism , Animals , Binding Sites , Catalytic Domain , Kinetics , Protein Binding , Protein Conformation , Substrate Specificity , Swine , Thermodynamics
11.
J Phys Chem B ; 119(49): 15256-62, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26556099

ABSTRACT

The mechanism of thermal adaptation of enzyme function at the molecular level is poorly understood but is thought to lie within the structure of the protein or its dynamics. Our previous work on pig heart lactate dehydrogenase (phLDH) has determined very high resolution structures of the active site, via isotope edited IR studies, and has characterized its dynamical nature, via laser-induced temperature jump (T-jump) relaxation spectroscopy on the Michaelis complex. These particular probes are quite powerful at getting at the interplay between structure and dynamics in adaptation. Hence, we extend these studies to the psychrophilic protein cgLDH (Champsocephalus gunnari; 0 °C) and the extreme thermophile tmLDH (Thermotoga maritima LDH; 80 °C) for comparison to the mesophile phLDH (38-39 °C). Instead of the native substrate pyruvate, we utilize oxamate as a nonreactive substrate mimic for experimental reasons. Using isotope edited IR spectroscopy, we find small differences in the substate composition that arise from the detailed bonding patterns of oxamate within the active site of the three proteins; however, we find these differences insufficient to explain the mechanism of thermal adaptation. On the other hand, T-jump studies of reduced ß-nicotinamide adenine dinucleotide (NADH) emission reveal that the most important parameter affecting thermal adaptation appears to be enzyme control of the specific kinetics and dynamics of protein motions that lie along the catalytic pathway. The relaxation rate of the motions scale as cgLDH > phLDH > tmLDH in a way that faithfully matches kcat of the three isozymes.


Subject(s)
Adaptation, Physiological , L-Lactate Dehydrogenase/metabolism , Animals , Myocardium/enzymology , Spectroscopy, Fourier Transform Infrared , Swine
12.
Acc Chem Res ; 48(2): 407-13, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25539144

ABSTRACT

CONSPECTUS: As is well-known, enzymes are proteins designed to accelerate specific life essential chemical reactions by many orders of magnitude. A folded protein is a highly dynamical entity, best described as a hierarchy or ensemble of interconverting conformations on all time scales from femtoseconds to minutes. We are just beginning to learn what role these dynamics play in the mechanism of chemical catalysis by enzymes due to extraordinary difficulties in characterizing the conformational space, that is, the energy landscape, of a folded protein. It seems clear now that their role is crucially important. Here we discuss approaches, based on vibrational spectroscopies of various sorts, that can reveal the energy landscape of an enzyme-substrate (Michaelis) complex and decipher which part of the typically very complicated landscape is relevant to catalysis. Vibrational spectroscopy is quite sensitive to small changes in bond order and bond length, with a resolution of 0.01 Å or less. It is this sensitivity that is crucial to its ability to discern bond reactivity. Using isotope edited IR approaches, we have studied in detail the role of conformational heterogeneity and dynamics in the catalysis of hydride transfer by LDH (lactate dehydrogenase). Upon the binding of substrate, the LDH·substrate system undergoes a search through conformational space to find a range of reactive conformations over the microsecond to millisecond time scale. The ligand is shuttled to the active site via first forming a weakly bound enzyme·ligand complex, probably consisting of several heterogeneous structures. This complex undergoes numerous conformational changes spread throughout the protein that shuttle the enzyme·substrate complex to a range of conformations where the substrate is tightly bound. This ensemble of conformations all have a propensity toward chemistry, but some are much more facile for carrying out chemistry than others. The search for these tightly bound states is clearly directed by the forces that the protein can bring to bear, very much akin to the folding process to form native protein in the first place. In fact, the conformational subspace of reactive conformations of the Michaelis complex can be described as a "collapse" of reactive substates compared with that found in solution, toward a much smaller and much more reactive set. These studies reveal how dynamic disorder in the protein structure can modulate the on-enzyme reactivity. It is very difficult to account for how the dynamical nature of the ground state of the Michaelis complex modulates function by transition state concepts since dynamical disorder is not a starting feature of the theory. We find that dynamical disorder may well play a larger or similar sized role in the measured Gibbs free energy of a reaction compared with the actual energy barrier involved in the chemical event. Our findings are broadly compatible with qualitative concepts of evolutionary adaptation of function such as adaptation to varying thermal environments. Our work suggests a methodology to determine the important dynamics of the Michaelis complex.


Subject(s)
Biocatalysis , L-Lactate Dehydrogenase/metabolism , Kinetics , L-Lactate Dehydrogenase/chemistry , Models, Molecular , Protein Conformation , Thermodynamics
13.
J Phys Chem B ; 118(37): 10854-62, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25149276

ABSTRACT

Protein conformational heterogeneity and dynamics are known to play an important role in enzyme catalysis, but their influence has been difficult to observe directly. We have studied the effects of heterogeneity in the catalytic reaction of pig heart lactate dehydrogenase using isotope edited infrared spectroscopy, laser-induced temperature jump relaxation, and kinetic modeling. The isotope edited infrared spectrum reveals the presence of multiple reactive conformations of pyruvate bound to the enzyme, with three major reactive populations having substrate C2 carbonyl stretches at 1686, 1679, and 1674 cm(-1), respectively. The temperature jump relaxation measurements and kinetic modeling indicate that these substates form a heterogeneous branched reaction pathway, and each substate catalyzes the conversion of pyruvate to lactate with a different rate. Furthermore, the rate of hydride transfer is inversely correlated with the frequency of the C2 carbonyl stretch (the rate increases as the frequency decreases), consistent with the relationship between the frequency of this mode and the polarization of the bond, which determines its reactivity toward hydride transfer. The enzyme does not appear to be optimized to use the fastest pathway preferentially but rather accesses multiple pathways in a search process that often selects slower ones. These results provide further support for a dynamic view of enzyme catalysis where the role of the enzyme is not just to bring reactants together but also to guide the conformational search for chemically competent interactions.


Subject(s)
L-Lactate Dehydrogenase/metabolism , Spectrophotometry, Infrared , Animals , Biocatalysis , Kinetics , L-Lactate Dehydrogenase/chemistry , Myocardium/enzymology , Pyruvic Acid/chemistry , Pyruvic Acid/metabolism , Swine , Temperature
14.
Biochemistry ; 53(11): 1849-57, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24576110

ABSTRACT

Lactate dehydrogenase (LDH) catalyzes the interconversion between pyruvate and lactate with nicotinamide adenine dinucleotide (NAD) as a cofactor. Using isotope-edited difference Fourier transform infrared spectroscopy on the "live" reaction mixture (LDH·NADH·pyruvate ⇌ LDH·NAD(+)·lactate) for the wild-type protein and a mutant with an impaired catalytic efficiency, a set of interconverting conformational substates within the pyruvate side of the Michaelis complex tied to chemical activity is revealed. The important structural features of these substates include (1) electronic orbital overlap between pyruvate's C2═O bond and the nicotinamide ring of NADH, as shown from the observation of a delocalized vibrational mode involving motions from both moieties, and (2) a characteristic hydrogen bond distance between the pyruvate C2═O group and active site residues, as shown by the observation of at least four C2═O stretch bands indicating varying degrees of C2═O bond polarization. These structural features form a critical part of the expected reaction coordinate along the reaction path, and the ability to quantitatively determine them as well as the substate population ratios in the Michaelis complex provides a unique opportunity to probe the structure-activity relationship in LDH catalysis. The various substates have a strong variance in their propensity toward on enzyme chemistry. Our results suggest a physical mechanism for understanding the LDH-catalyzed chemistry in which the bulk of the rate enhancement can be viewed as arising from a stochastic search through an available phase space that, in the enzyme system, involves a restricted ensemble of more reactive conformational substates as compared to the same chemistry in solution.


Subject(s)
Energy Metabolism/physiology , Hydro-Lyases/chemistry , Hydro-Lyases/metabolism , Animals , Catalysis , Catalytic Domain , NAD/chemistry , Pyruvic Acid/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Stochastic Processes , Swine
15.
Biochemistry ; 52(11): 1886-92, 2013 Mar 19.
Article in English | MEDLINE | ID: mdl-23428201

ABSTRACT

Large scale dynamics within the Michaelis complex mimic of Bacillus stearothermophilus thermophilic lactate dehydrogenase, bsLDH·NADH·oxamate, were studied with site specific resolution by laser-induced temperature jump relaxation spectroscopy with a time resolution of 20 ns. NADH emission and Trp emission from the wild type and a series of single-tryptophan bsLDH mutants, with the tryptophan positions different distances from the active site, were used as reporters of evolving structure in response to the rapid change in temperature. Several distinct dynamical events were observed on the millisecond to microsecond time scale involving motion of atoms spread over the protein, some occurring concomitantly or nearly concomitantly with structural changes at the active site. This suggests that a large portion of the protein-substrate complex moves in a rather concerted fashion to bring about catalysis. The catalytically important surface loop undergoes two distinct movements, both needed for a competent enzyme. Our results also suggest that what is called "loop motion" is not just localized to the loop and active site residues. Rather, it involves the motion of atoms spread over the protein, even some quite distal from the active site. How these results bear on the catalytic mechanism of bsLDH is discussed.


Subject(s)
Geobacillus stearothermophilus/enzymology , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Tryptophan/genetics , Catalytic Domain , Geobacillus stearothermophilus/genetics , Geobacillus stearothermophilus/metabolism , Kinetics , L-Lactate Dehydrogenase/chemistry , Models, Molecular , NAD/chemistry , NAD/metabolism , Oxamic Acid/chemistry , Oxamic Acid/metabolism , Point Mutation , Protein Conformation , Temperature , Tryptophan/chemistry , Tryptophan/metabolism
16.
J Phys Chem B ; 116(21): 6166-76, 2012 May 31.
Article in English | MEDLINE | ID: mdl-22564106

ABSTRACT

Yersinia protein tyrosine phosphatase (YopH) is the most efficient enzyme among all PTPases. YopH is hyperactive compared to human PTPases, interfering with mammalian cellular pathways to achieve the pathogenicity of Yersinia. Two properties related to the catalytic loop structure differences have been proposed to affect its dynamics and enzyme efficiency. One is the ability of the loop to form stabilizing interactions to bound ligand after loop closure, which has long been recognized. In addition, the loop flexibility/mobility was suggested in a previous study to be a factor as well, based on the observation that incremental changes in PTPase loop structure by single point mutations to alanine often induce incremental changes in enzyme catalytic efficiency. In this study, the temperature jump relaxation spectroscopy (T-jump) has been used to discern the subtle changes of the loop dynamics due to point loop mutations. As expected, our results suggest a correlation between loop dynamics and the size of the residue on the catalytic loop. The stabilization of the enzyme-ligand complex is often enthalpy driven, achieved by formation of additional favorable hydrogen bonding/ionic interactions after loop closure. Interestingly, our T-jump and X-ray crystallography studies on YopH suggest that the elimination of some ligand-protein interactions by mutation does not necessarily destabilize the ligand-enzyme complex after loop closure, since the increased entropy in the forms of more mobile protein residues may be sufficient to compensate the free energy loss due to lost interactions and may even lead to enhanced efficiency of the enzyme catalysis. How these competing loop properties may affect loop dynamics and enzyme function are discussed.


Subject(s)
Biocatalysis , Protein Tyrosine Phosphatases/chemistry , Protein Tyrosine Phosphatases/metabolism , Spectrum Analysis , Temperature , Yersinia pestis/enzymology , Amino Acid Sequence , Catalytic Domain , Catechols/metabolism , Crystallography, X-Ray , Enzyme Stability , Humans , Kinetics , Models, Molecular , Mutation , Nitrophenols/metabolism , Organophosphorus Compounds/metabolism , Protein Tyrosine Phosphatases/genetics , Thermodynamics
17.
J Phys Chem B ; 115(23): 7670-8, 2011 Jun 16.
Article in English | MEDLINE | ID: mdl-21568287

ABSTRACT

A series of isotope edited IR measurements, both static as well as temperature jump relaxation spectroscopy, are performed on lactate dehydrogenase (LDH) to determine the ensemble of structures available to its Michaelis complex. There clearly has been a substantial reduction in the number of states available to the pyruvate substrate (as modeled by the substrate mimic, oxamate) and NADH when bound to protein compared to dissolved in solution, as determined by the bandwidths and positions of the critical C(2)═O band of the bound substrate mimic and the C(4)-H stretch of the NADH reduced nicotinamide group. Moreover, it is found that a strong ionic bond (characterized by a signature IR band discovered in this study) is formed between the carboxyl group of bound pyruvate with (presumably) Arg171, forming a strong "anchor" within the protein matrix. However, conformational heterogeneity within the Michaelis complex is found that has an impact on both catalytic efficiency and thermodynamics of the enzyme.


Subject(s)
L-Lactate Dehydrogenase , Vibration , Catalytic Domain , Crystallography, X-Ray , L-Lactate Dehydrogenase/chemistry , L-Lactate Dehydrogenase/metabolism , Models, Molecular , NAD/chemistry , NAD/metabolism , Protein Conformation , Pyruvic Acid/chemistry , Pyruvic Acid/metabolism , Spectroscopy, Fourier Transform Infrared
18.
Biochemistry ; 50(10): 1582-9, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21306147

ABSTRACT

Laser-induced temperature jump relaxation spectroscopy was used to probe the effect of osmolytes on the microscopic rate constants of the lactate dehydrogenase-catalyzed reaction. NADH fluorescence and absorption relaxation kinetics were measured for the lactate dehydrogenase (LDH) reaction system in the presence of varying amounts of trimethylamine N-oxide (TMAO), a protein-stabilizing osmolyte, or urea, a protein-destabilizing osmolyte. Trimethylamine N-oxide (TMAO) at a concentration of 1 M strongly increases the rate of hydride transfer, nearly nullifies its activation energy, and also slightly increases the enthalpy of hydride transfer. In 1 M urea, the hydride transfer enthalpy is almost nullified, but the activation energy of the step is not affected significantly. TMAO increases the preference of the closed conformation of the active site loop in the LDH·NAD(+)·lactate complex; urea decreases it. The loop opening rate in the LDH·NADH·pyruvate complex changes its temperature dependence to inverse Arrhenius with TMAO. In this complex, urea accelerates the loop motion, without changing the loop opening enthalpy. A strong, non-Arrhenius decrease in the pyruvate binding rate in the presence of TMAO offers a decrease in the fraction of the open loop, pyruvate binding competent form at higher temperatures. The pyruvate off rate is not affected by urea but decreases with TMAO. Thus, the osmolytes strongly affect the rates and thermodynamics of specific events along the LDH-catalyzed reaction: binding of substrates, loop closure, and the chemical event. Qualitatively, these results can be understood as an osmolyte-induced change in the energy landscape of the protein complexes, shifting the conformational nature of functional substates within the protein ensemble.


Subject(s)
Biocatalysis , L-Lactate Dehydrogenase/chemistry , L-Lactate Dehydrogenase/metabolism , Osmosis , Swine/metabolism , Animals , Thermodynamics
19.
Biochemistry ; 49(12): 2705-14, 2010 Mar 30.
Article in English | MEDLINE | ID: mdl-20170081

ABSTRACT

Isotope-edited difference Raman and FTIR studies complemented by ab initio calculations have been applied to the transition state analogue complex of HGPRT.ImmHP.MgPP(i) to determine the ionic states of the 5'-phosphate moiety of ImmHP and of PP(i). These measurements characterize electrostatic interactions within the enzyme active site as deduced from frequency shifts of the phosphate groups. The bound 5'-phosphate moiety of ImmHP is dianionic, and this phosphate group exists in two different conformations within the protein complex. In one conformation, a hydrogen bond between the 5'-phosphate of ImmHP and the OH group of Tyr104 in the catalytic loop appears to be stronger. With the stronger H-bond, the OH of Tyr104 approaches one of the P..O bonds from the bridging oxygen side to cause distortion of the PO(3) moiety, as indicated by a lowered symmetric P..O stretch frequency. The asymmetric stretch frequencies are similar in both phosphate conformations. Bound PP(i) in this complex is fully ionized to P(2)O(7)(4-). Bond frequency changes for bound PP(i) indicate coordination to Mg(2+) ions but show no indication of significant P..O bond polarization. Extrapolation of these results to reaction coordinate motion for HGPRT suggests that bond formation between C1' of the nucleotide ribose and the oxygen of PP(i) is accomplished by migration of the ribocation toward immobilized pyrophosphate.


Subject(s)
Diphosphates/pharmacology , Hypoxanthine Phosphoribosyltransferase/chemistry , Hypoxanthine Phosphoribosyltransferase/pharmacology , Binding Sites , Catalytic Domain , Enzyme Activation , Hydrogen Bonding , Hypoxanthine/chemistry , Models, Molecular , Substrate Specificity
20.
Biochemistry ; 48(16): 3658-68, 2009 Apr 28.
Article in English | MEDLINE | ID: mdl-19191546

ABSTRACT

Human PNP is a homotrimer containing three tryptophan residues at positions 16, 94, and 178, all remote from the catalytic site. The catalytic sites of PNP are located near the subunit-subunit interfaces where F159 is a catalytic site residue donated from an adjacent subunit. F159 covers the top (beta) surface of the ribosyl group at the catalytic site. QM/MM calculations of human PNP have shown that F159 is the center of the most mobile region of the protein providing access to the substrate in the active site. F159 is also the key residue in a cluster of hydrophobic residues that shield catalytic site ligands from bulk solvent. Trp-free human PNP (Leuko-PNP) was previously engineered by replacing the three Trp residues of native PNP with Tyr. From this active construct, a single Trp residue was placed in the catalytic site loop (F159W-Leuko-PNP) as a reporter group for the ribosyl region of the catalytic site. The F159W-Leuko-PNP fluorescence is red shifted compared to native PNP, suggesting a solvent-exposed Trp residue. Upon ligand binding (hypoxanthine), the 3-fold fluorescence quench confirms conformational packing of the catalytic site pocket hydrophobic cluster. F159W-Leuko-PNP has an on-enzyme thermodynamic equilibrium constant (Keq) near unity in the temperature range between 20 and 30 degrees C and nonzero enthalpic components, making it suitable for laser-induced T-jump analyses. T-jump relaxation kinetics of F159W-Leuko-PNP in equilibrium with substrates and/or products indicate the conformational equilibria of at least two ternary complex intermediates in the nano- to millisecond time scale (1000-10000 s-1) that equilibrate prior to the slower chemical step (approximately 200 s-1). F159W-Leuko-PNP provides a novel protein platform to investigate the protein conformational dynamics occurring prior to transition state formation.


Subject(s)
Protein Conformation , Purine-Nucleoside Phosphorylase , Tryptophan/chemistry , Catalytic Domain , Humans , Kinetics , Models, Molecular , Molecular Structure , Mutagenesis, Site-Directed , Protein Binding , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Purine Nucleosides/chemistry , Purine Nucleosides/metabolism , Purine-Nucleoside Phosphorylase/chemistry , Purine-Nucleoside Phosphorylase/genetics , Purine-Nucleoside Phosphorylase/metabolism , Pyrimidinones/chemistry , Pyrimidinones/metabolism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...