Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Gels ; 10(2)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38391479

ABSTRACT

Thyme oil (THO) possesses excellent antibacterial and antioxidant properties which are suitable for skin inflammatory disorders such as acne vulgaris. However, THO is insoluble in water and its components are highly volatile. Therefore, these drawbacks may be overcome by its encapsulation in biodegradable PLGA nanoparticles (THO-NPs) that had been functionalized using several strategies. Moreover, cell viability was studied in HaCat cells, confirming their safety. In order to assess therapeutic efficacy against acne, bacterial reduction capacity and antioxidant properties were assessed. Moreover, the anti-inflammatory and wound-healing abilities of THO-NPs were also confirmed. Additionally, ex vivo antioxidant assessment was carried out using pig skin, demonstrating the suitable antioxidant properties of THO-NPs. Moreover, THO and THO-NPs were dispersed in a gelling system, and stability, rheological properties, and extensibility were assessed. Finally, the biomechanical properties of THO-hydrogel and THO-NP-hydrogel were studied in human volunteers, confirming the suitable activity for the treatment of acne. As a conclusion, THO has been encapsulated into PLGA NPs, and in vitro, ex vivo, and in vivo assessments had been carried out, demonstrating excellent properties for the treatment of inflammatory skin disorders.

2.
Int J Nanomedicine ; 19: 1225-1248, 2024.
Article in English | MEDLINE | ID: mdl-38348173

ABSTRACT

Purpose: Acne vulgaris is one of the most prevalent dermal disorders affecting skin health and appearance. To date, there is no effective cure for this pathology, and the majority of marketed formulations eliminate both healthy and pathological microbiota. Therefore, hereby we propose the encapsulation of an antimicrobial natural compound (thymol) loaded into lipid nanostructured systems to be topically used against acne. Methods: To address this issue, nanostructured lipid carriers (NLC) capable of encapsulating thymol, a natural compound used for the treatment of acne vulgaris, were developed either using ultrasonication probe or high-pressure homogenization and optimized using 22-star factorial design by analyzing the effect of NLC composition on their physicochemical parameters. These NLC were optimized using a design of experiments approach and were characterized using different physicochemical techniques. Moreover, short-term stability and cell viability using HaCat cells were assessed. Antimicrobial efficacy of the developed NLC was assessed in vitro and ex vivo. Results: NLC encapsulating thymol were developed and optimized and demonstrated a prolonged thymol release. The formulation was dispersed in gels and a screening of several gels was carried out by studying their rheological properties and their skin retention abilities. From them, carbomer demonstrated the capacity to be highly retained in skin tissues, specifically in the epidermis and dermis layers. Moreover, antimicrobial assays against healthy and pathological skin pathogens demonstrated the therapeutic efficacy of thymol-loaded NLC gelling systems since NLC are more efficient in slowly reducing C. acnes viability, but they possess lower antimicrobial activity against S. epidermidis, compared to free thymol. Conclusion: Thymol was successfully loaded into NLC and dispersed in gelling systems, demonstrating that it is a suitable candidate for topical administration against acne vulgaris by eradicating pathogenic bacteria while preserving the healthy skin microbiome.


Subject(s)
Acne Vulgaris , Anti-Infective Agents , Nanostructures , Humans , Thymol/pharmacology , Drug Carriers/chemistry , Lipids/chemistry , Nanostructures/chemistry , Anti-Infective Agents/pharmacology , Gels/chemistry , Particle Size
3.
Colloids Surf B Biointerfaces ; 234: 113678, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38194839

ABSTRACT

Thymol-loaded PLGA nanoparticles (TH-NPs) were incorporated into different semi-solid formulations using variable gelling agents (carbomer, polysaccharide and poloxamer). The formulations were physicochemically characterized in terms of size, polydispersity index and zeta potential. Moreover, stability studies were performed by analyzing the backscattering profile showing that the gels were able to increase the nanoparticles stability at 4 °C. Moreover, rheological properties showed that all gels were able to increase the viscosity of TH-NPs with the carbomer gels showing the highest values. Moreover, the observation of carbomer dispersed TH-NPs under electron microscopical techniques showed 3D nanometric cross-linked filaments with the NPs found embedded in the threads. In addition, cytotoxicity studies showed that keratinocyte cells in contact with the formulations obtained cell viability values higher than 70 %. Furthermore, antimicrobial efficacy was assessed against C. acnes and S. epidermidis showing that the formulations eliminated the pathogenic C. acnes but preserved the resident S. epidermidis which contributes towards a healthy skin microbiota. Finally, biomechanical properties of TH-NPs dispersed in carbomer gels in contact with healthy human skin were studied showing that they did not alter skin properties and were able to reduce sebum which is increased in acne vulgaris. As a conclusion, TH-NPs dispersed in semi-solid formulations and, especially in carbomer gels, may constitute a suitable solution for the treatment of acne vulgaris.


Subject(s)
Acne Vulgaris , Nanoparticles , Humans , Hydrogels/chemistry , Thymol/pharmacology , Skin , Acne Vulgaris/drug therapy , Polylactic Acid-Polyglycolic Acid Copolymer , Nanoparticles/chemistry
4.
Int J Pharm ; 651: 123732, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38142012

ABSTRACT

Acne constitutes one of the most prevalent skin disorder affecting both skin and mental health of patients. However, no cure has been developed so far. In this area, Thymol constitutes a potential candidate since it is able to restore the healthy microbiota of the skin. However, its permeation properties cause its fast elimination and, to avoid this problem, thymol has been loaded into nanostructured lipid carriers (TH-NLCs). Moreover, to increase the suitability of these systems for skin applications, several surface functionalization strategies of TH-NLCs had been assessed. Among the different molecules, phosphatidylcholine-TH-NLCs demonstrated to be safe as well as to provide high antioxidant activity in cellular studies. Therefore, to administer these systems to the skin, functionalized TH-NLCs were dispersed into a carbomer gel developing semi-solid formulations. Rheological properties, porosity and extensibility of TH dispersed in carbomer as well as phosphatidylcholine-TH-NLCs were assessed demonstrating suitable properties for dermal applications. Moreover, both formulations were applied in healthy volunteers demonstrating that gel-phosphatidylcholine-TH-NLCs were able to increase in skin hydration, decrease water loss and reduce skin sebum. Therefore, gel-phosphatidylcholine-TH-NLCs proved to be a suitable system for skin pathologies linked with high sebum generation, loss of hydration and high oxidation, such as acne vulgaris.


Subject(s)
Acne Vulgaris , Nanoparticles , Nanostructures , Humans , Thymol , Drug Carriers/therapeutic use , Skin , Acne Vulgaris/drug therapy , Phosphatidylcholines , Particle Size
5.
Pharmaceutics ; 15(12)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38140039

ABSTRACT

The permeability of the oral or nasal mucosa is higher than that of the skin. Mucosa permeability depends mainly on the thickness and keratinization degree of the tissues. Their permeability barrier is conditioned by the presence of certain lipids. This work has the main aim of reinforcing the barrier effect of oral mucosa with a series of formulations to reduce permeation. Transmembrane water loss of different formulations was evaluated, and three of them were selected to be tested on the sublingual mucosa permeation of drugs. Caffeine, ibuprofen, dexamethasone, and ivermectin were applied on porcine skin, mucosa, and modified mucosa in order to compare the effectiveness of the formulations. A similar permeation profile was obtained in the different membranes: caffeine > ibuprofen~dexamethasone > ivermectin. The most efficient formulation was a liposomal formulation composed of lipids that are present in the skin stratum corneum. Impermeability provided by this formulation was notable mainly for the low-molecular-weight compounds, decreasing their permeability coefficient by between 40 and 80%. The reinforcement of the barrier function of mucosa provides a reduction or prevention of the permeation of different actives, which could be extrapolated to toxic compounds such as viruses, contaminants, toxins, etc.

6.
Membranes (Basel) ; 13(12)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38132909

ABSTRACT

The main objective of this study is the evaluation of the use of a synthetic membrane, Nuclepore, as a model for permeation studies through sublingual mucosa. The permeability of two types of membranes, porcine sublingual oral mucosa and a synthetic Nuclepore membrane, to water was compared. Moreover, the water permeability of membranes modified with waterproofing formulations was measured to study their ability to protect against the penetration of viruses, toxins, etc. A relatively high correlation (R2 0.88) was obtained between the transmucosal water loss (TMWL) values of the artificial membrane and the mucosa. These results support the possible use of this synthetic membrane in the screening of the water permeability of formulations. In addition, studies of the permeation of different actives, drugs, and biocides through the two membranes were carried out, and these results were compared with their skin permeation data. The synthetic membrane does not seem to discern between compounds in terms of permeability. However, the permeation of caffeine through intact or modified membranes incorporating waterproofing formulations presents similar permeation profiles through the synthetic membrane and mucosa. The results from these assays should lend support to the use of this synthetic membrane when screening formulations to be applied in oral penetration studies.

7.
Pharmaceutics ; 15(10)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37896163

ABSTRACT

Apremilast (APM) is a novel drug for the treatment of psoriasis and psoriatic arthritis. APM is a phosphodiesterase 4 (PDE4) inhibitor, raising intracellular cAMP levels and thereby decreasing the inflammatory response by modulating the expression of TNF-α, IL-17, IL-23, and other inflammatory cytokines. The goal of this study is to develop APM gels as a new pharmaceutical formulation for the treatment of topical psoriasis. APM was solubilized in Transcutol-P and incorporated into Pluronic F127, Sepigel, and carbomer bases at different proportions. All formulations were characterized physiochemically. A biopharmaceutical study (release profile) was performed, and ex vivo permeation was evaluated using a human skin model. A toxicity assay was carried out on the HaCaT cell line. A mouse model of imiquimod-induced psoriasis skin inflammation was carried out to determine its efficacy by histological analysis, RNA extraction, and RT-qPCR assays. APM gel formulations showed good physicochemical characteristics and a sustained release profile. There was no permeation of any gel measured through human skin, indicating a high retained amount of APM on the skin. Cell viability was greater than 80% at most dilution concentrations. APM gels treated the psoriasis mouse model, and it shows a reduction in the proinflammatory cytokines (IL-8, IL-17A, IL-17F, and IL-23). APM gels could be a new approach for the treatment of topical psoriasis.

8.
Gels ; 9(6)2023 May 29.
Article in English | MEDLINE | ID: mdl-37367119

ABSTRACT

Pranoprofen (PRA)-loaded nanostructured lipid carriers (NLC) have been dispersed into blank gels composed of 1% of Carbomer 940 (PRA-NLC-Car) and 3% of Sepigel® 305 (PRA-NLC-Sep) as a novel strategy to refine the biopharmaceutical profile of PRA, for dermal administration in the treatment of skin inflammation that may be caused by possible skin abrasion. This stratagem intends to improve the joining of PRA with the skin, improving its retention and anti-inflammatory effect. Gels were evaluated for various parameters such as pH, morphology, rheology, and swelling. In vitro drug release research and ex vivo permeation through the skin were carried out on Franz diffusion cells. Additionally, in vivo assays were carried out to evaluate the anti-inflammatory effect, and tolerance studies were performed in humans by evaluating the biomechanical properties. Results showed a rheological profile common of semi-solid pharmaceutical forms for dermal application, with sustained release up to 24 h. In vivo studies using PRA-NLC-Car and PRA-NLC-Sep in Mus musculus mice and hairless rats histologically demonstrated their efficacy in an inflammatory animal model study. No signs of skin irritation or modifications of the skin's biophysical properties were identified and the gels were well tolerated. The results obtained from this investigation concluded that the developed semi-solid formulations represent a fitting drug delivery carrier for PRA's transdermal delivery, enhancing its dermal retention and suggesting that they can be utilized as an interesting and effective topical treatment for local skin inflammation caused by a possible abrasion.

9.
Gels ; 9(5)2023 May 16.
Article in English | MEDLINE | ID: mdl-37233006

ABSTRACT

Sialolithiasis mainly affects the oral salivary glands due to the presence of small stones that obstruct the secretion of saliva. The treatment and control of pain and inflammation during the course of this pathology is essential to guarantee the patient's comfort. For this reason, a ketorolac calcium cross-linked alginate hydrogel was developed, and it was then applied in the area of the buccal cavity. The formulation was characterized (swelling and degradation profile, extrusion, extensibility, surface morphology, viscosity, and drug release). The drug release was studied ex vivo in static Franz cells and with a dynamic ex vivo method under artificial saliva continuous flow. The product exhibits adequate physicochemical properties considering the intended purpose, and the drug concentrations retained in the mucosa were high enough to deliver a therapeutic local concentration able to reduce the pain associated with the patient's conditions. The results confirmed the suitability of the formulation for application in the mouth.

10.
Gels ; 9(4)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37102920

ABSTRACT

Caspofungin is a drug that is used for fungal infections that are difficult to treat, including invasive aspergillosis and candidemia, as well as other forms of invasive candidiasis. The aim of this study was to incorporate Azone in a caspofungin gel (CPF-AZ-gel) and compare it with a promoter-free caspofungin gel (CPF-gel). An in vitro release study using a polytetrafluoroethylene membrane and ex vivo permeation into human skin was adopted. The tolerability properties were confirmed by histological analysis, and an evaluation of the biomechanical properties of the skin was undertaken. Antimicrobial efficacy was determined against Candida albicans, Candida glabrata, Candida parapsilosis, and Candida tropicalis. CPF-AZ-gel and CPF-gel, which had a homogeneous appearance, pseudoplastic behavior, and high spreadability, were obtained. The biopharmaceutical studies confirmed that caspofungin was released following a one-phase exponential association model and the CPF-AZ gel showed a higher release. The CPF-AZ gel showed higher retention of caspofungin in the skin while limiting the diffusion of the drug to the receptor fluid. Both formulations were well-tolerated in the histological sections, as well as after their topical application in the skin. These formulations inhibited the growth of C. glabrata, C. parapsilosis, and C. tropicalis, while C. albicans showed resistance. In summary, dermal treatment with caspofungin could be used as a promising therapy for cutaneous candidiasis in patients that are refractory or intolerant to conventional antifungal agents.

11.
Pharmaceutics ; 14(12)2022 Dec 04.
Article in English | MEDLINE | ID: mdl-36559208

ABSTRACT

The low water solubility of baricitinib (BCT) limits the development of new formulations for the topical delivery of the drug. The aims of this study were to assess the solubility of BCT in different solvents, including Transcutol, a biocompatible permeation enhancer that is miscible in water, to evaluate the drug uptake in human skin and porcine tissues (sclera, cornea, oral, sublingual, and vaginal), and to subsequently extract the drug from the tissues so as to determine the drug recovery using in vitro techniques. Analytical methods were developed and validated for the quantification of BCT in Transcutol using absorption and fluorescence spectroscopies, which are complementary to each other and permit the detection of the drug across a broad range of concentrations. Results show that Transcutol permits an increased drug solubility, and that BCT is able to penetrate the tissues studied. The solutions of BCT in Transcutol were stable for at least one week. Hence, Transcutol may be a suitable solvent for further development of topical formulations.

12.
Plants (Basel) ; 11(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36432834

ABSTRACT

Essential oils are natural aromatic substances that contain complex mixtures of many volatile compounds frequently used in pharmaceutical and cosmetic industries. Dacryodes peruviana (Loes.) H.J. Lam is a native species from Ecuador whose anti-inflammatory activity has not been previously reported, thus the aim of this study was to evaluate the anti-inflammatory activity of D. peruviana essential oil. To that end, essential oil from D. peruviana fruits was isolated by hydrodistillation and characterized physically and chemically. The tolerance of the essential oil was analyzed by cytotoxicity studies using human keratinocytes. The anti-inflammatory activity was evaluated by an arachidonic acid-induced edema model in mouse ear. The predominant compounds in D. peruviana essential oil were α-phellandrene, limonene, and α-pinene, with the three compounds reaching approximately 83% of the total composition. Tolerance studies showed high biocompatibility of this essential oil with human keratinocytes. In vivo studies demonstrated a moisturizing effect and an alleviation of several events occurred during the inflammatory process after topical treatment with D. peruviana essential oil such as decline in skin edema; reduction in leukocytic infiltrate; and decrease in inflammatory cytokines TNFα, IL-8, IL-17A, and IL-23. Therefore, this essential oil could be an attractive treatment for skin inflammation.

13.
Gels ; 8(11)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36354623

ABSTRACT

Alzheimer's disease is characterized by a progressive deterioration of neurons resulting in a steady loss of cognitive functions and memory. Many treatments encounter the challenge of overcoming the blood-brain barrier, thus the intranasal route is a non-invasive effective alternative that enhances the drug delivery in the target organ-the brain-and reduces the side effects associated with systemic administration. This study aimed at developing intranasal gels of donepezil as an approach to Alzheimer's disease. Three different gels were elaborated and characterized in terms of pH, morphology, gelation temperature, rheology, and swelling. An in vitro release study and an ex vivo permeation in porcine nasal mucosa were conducted on Franz diffusion cells. The tolerability of the formulations was determined by the cytotoxicity in human nasal cells RPMI 2650. Results showed that pluronic gels exhibit the higher release rate and enhanced permeation compared to chitosan gel. Moreover, the combination of Pluronic F-127 and Transcutol® P exerted a synergic effect on the permeation of donepezil through the nasal mucosa. The resulting gels showed suitable tolerance in the RPMI 2650 cell line and physicochemical characteristics for intranasal delivery, and thus gel formulations administered by nasal mucosa could be an alternative strategy to improve the bioavailability of donepezil.

14.
Int J Mol Sci ; 23(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36232486

ABSTRACT

Drug-loaded nanocarriers (NCs) are new systems that can greatly improve the delivery and targeting of drugs to specific tissues and organs. In our work, a PPAR-γ agonist loaded into polymeric NCs was prepared, stabilized by spray-drying, and tested in vitro, ex vivo, and in vivo (animal models) to provide a safe formulation for optical anti-inflammatory treatments. The NCs were shown to be well tolerated, and no signs of irritancy or alterations of the eye properties were detected by the in vitro HET-CAM test and in vivo Draize test. Furthermore, no signs of cytotoxicity were found in the NC formulations on retinoblastoma cells (Y-79) analyzed using the alamarBlue assay, and the transmittance experiments evidenced good corneal transparency with the formulations tested. The ocular anti-inflammatory study confirmed the significant prevention efficacy using the NCs, and these systems did not affect the corneal tissue structure. Moreover, the animal corneal structure treated with the NCs was analyzed using X-ray diffraction using synchrotron light. Small-angle X-ray scattering (SAXS) analysis did not show a significant difference in corneal collagen interfibrillar spacing after the treatment with freshly prepared NCs or NCs after the drying process compared to the corresponding negative control when inflammation was induced. Considering these results, the PPAR-γ agonist NCs could be a safe and effective alternative for the treatment of inflammatory ocular processes.


Subject(s)
Eye Diseases , Peroxisome Proliferator-Activated Receptors , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cornea , Eye Diseases/drug therapy , Scattering, Small Angle , X-Ray Diffraction
15.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36297297

ABSTRACT

Transmucosal delivery is commonly used to prevent or treat local diseases. Pranoprofen is an anti-inflammatory drug prescribed in postoperative cataract surgery, intraocular lens implantation, chorioretinopathy, uveitis, age-related macular degeneration or cystoid macular edema. Pranoprofen can also be used for acute and chronic management of osteoarthritis and rheumatoid arthritis. Quality by Design (QbD) provides a systematic approach to drug development and maps the influence of the formulation components. The aim of this work was to develop and optimize a nanostructured lipid carrier by means of the QbD and factorial design suitable for the topical management of inflammatory processes on mucosal tissues. To this end, the nanoparticles loading pranoprofen were prepared by a high-pressure homogenization technique with Tween 80 as stabilizer and Lanette® 18 as the solid lipid. From, the factorial design results, the PF-NLCs-N6 formulation showed the most suitable characteristics, which was selected for further studies. The permeability capacity of pranoprofen loaded in the lipid-based nanoparticles was evaluated by ex vivo transmucosal permeation tests, including buccal, sublingual, nasal, vaginal, corneal and scleral mucosae. The results revealed high permeation and retention of pranoprofen in all the tissues tested. According to the predicted plasma concentration at the steady-state, no systemic effects would be expected, any neither were any signs of ocular irritancy observed from the optimized formulation when tested by the HET-CAM technique. Hence, the optimized formulation (PF-NLCs-N6) may offer a safe and attractive nanotechnological tool in topical treatment of local inflammation on mucosal diseases.

16.
Pharmaceutics ; 14(5)2022 May 12.
Article in English | MEDLINE | ID: mdl-35631631

ABSTRACT

Carprofen (CP) is a non-steroidal anti-inflammatory drug (NSAID) frequently used to treat respiratory diseases in numerous small animals, but also in large species. CP is a formidable candidate for further therapeutic research of human inflammatory diseases using the pig as an animal model. However, CP administration in swine is very uncommon and respective pharmacokinetics/bioavailability studies are scarce. A simultaneous population pharmacokinetic analysis after CP intravenous and intramuscular administrations in pigs has shown high extent and rate of absorption and a similar distribution profile with respect to man and other mammals. However, clearance and half-life values found in swine suggest a slower elimination process than that observed in man and some other animal species. Although not reported in other species, liver and kidney concentrations achieved at 48 h post-intramuscular administration in pigs were ten times lower than those found in plasma. Simulations pointed to 4 mg/kg every 24 h as the best dosage regimen to achieve similar therapeutic levels to those observed in other animal species. All these findings support the use of pig as an animal model to study the anti-inflammatory effects of CP in humans.

17.
Pharmaceutics ; 13(11)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34834165

ABSTRACT

Pioglitazone-loaded PLGA-PEG nanoparticles (NPs) were stabilized by the spray drying technique as an alternative to the treatment of ocular inflammatory disorders. Pioglitazone-NPs were developed and characterized physiochemically. Interaction studies, biopharmaceutical behavior, ex vivo corneal and scleral permeation, and in vivo bioavailability evaluations were conducted. Fibrillar diameter and interfibrillar corneal spacing of collagen was analyzed by synchrotron X-ray scattering techniques and stability studies at 4 °C and was carried out before and after the spray drying process. NPs showed physicochemical characteristics suitable for ocular administration. The release was sustained up to 46 h after drying; ex vivo corneal and scleral permeation profiles of pioglitazone-NPs before and after drying demonstrated higher retention and permeation through cornea than sclera. These results were correlated with an in vivo bioavailability study. Small-angle X-ray scattering (SAXS) analysis did not show a significant difference in the organization of the corneal collagen after the treatment with pioglitazone-NPs before and after the drying process, regarding the negative control. The stabilization process by Nano Spray Dryer B-90 was shown to be useful in preserving the activity of pioglitazone inside the NPs, maintaining their physicochemical characteristics, in vivo bioavailability, and non-damage to corneal collagen function after SAXS analysis was observed.

18.
Pharmaceutics ; 13(11)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34834198

ABSTRACT

This study describes the preparation and evaluation of two formulations, a hydrogel and a nanostructured system, containing ketorolac tromethamine as an anti-inflammatory agent for the local therapy against the inflammatory process derived from the surgical excision of Condyloma acuminata. Both formulations were physicochemically characterized. In vitro release profiles show that the nanoparticles release 92% ± 2.3 of the total ketorolac tromethamine encapsulated, while the chitosan gel releases 18.6% ± 0.2. The ex vivo permeation and distribution through human skin were also assayed and was observed how the main amount of ketorolac tromethamine is retained in the epidermis. In vivo studies were accomplished to evaluate the anti-inflammatory efficacy in mice which also involved the histological analysis to confirm the in vivo results. The nanoparticles present a significantly higher anti-inflammatory efficacy than chitosan gel. The tolerability of developed formulations was assessed by monitoring the biomechanical properties of the skin before and after application of both formulations. No statistical differences in trans-epidermal water loss and skin hydration with respect to the basal values were observed and the formulations exhibited higher anti-inflammatory activity compared to a reference ketotorlac tromethamine solution. Therefore, it can be concluded that both formulations can be proposed as outstanding candidates for offering a local anti-inflammatory therapeutical tool with potential clinical application.

19.
J Nanobiotechnology ; 19(1): 359, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34749747

ABSTRACT

BACKGROUND: Acne is a common skin disorder that involves an infection inside the hair follicle, which is usually treated with antibiotics, resulting in unbalanced skin microbiota and microbial resistance. For this reason, we developed polymeric nanoparticles encapsulating thymol, a natural active compound with antimicrobial and antioxidant properties. In this work, optimization physicochemical characterization, biopharmaceutical behavior and therapeutic efficacy of this novel nanostructured system were assessed. RESULTS: Thymol NPs (TH-NP) resulted on suitable average particle size below 200 nm with a surface charge around - 28 mV and high encapsulation efficiency (80%). TH-NP released TH in a sustained manner and provide a slow-rate penetration into the hair follicle, being highly retained inside the skin. TH-NP possess a potent antimicrobial activity against Cutibacterium acnes and minor effect towards Staphylococcus epidermis, the major resident of the healthy skin microbiota. Additionally, the stability and sterility of developed NPs were maintained along storage. CONCLUSION: TH-NP showed a promising and efficient alternative for the treatment of skin acne infection, avoiding antibiotic administration, reducing side effects, and preventing microbial drug resistance, without altering the healthy skin microbiota. Additionally, TH-NP enhanced TH antioxidant activity, constituting a natural, preservative-free, approach for acne treatment.


Subject(s)
Acne Vulgaris/microbiology , Anti-Bacterial Agents , Propionibacteriaceae/drug effects , Thymol , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacokinetics , Antioxidants/pharmacology , Cell Line , Humans , Microbial Sensitivity Tests , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Skin/drug effects , Skin/metabolism , Skin/microbiology , Thymol/chemistry , Thymol/pharmacokinetics , Thymol/pharmacology
20.
Int J Pharm ; 609: 121188, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34655707

ABSTRACT

Ocular inflammation is one of the most common comorbidities associated to ophthalmic surgeries and disorders. Since conventional topical ophthalmic treatments present disadvantages such as low bioavailability and relevant side effects, natural alternatives constitute an unmet medical need. In this sense, lactoferrin, a high molecular weight protein, is a promising alternative against inflammation. However, lactoferrin aqueous instability and high nasolacrimal duct drainage compromises its potential effectiveness. Moreover, nanotechnology has led to an improvement in the administration of active compounds with compromised biopharmaceutical profiles. Here, we incorporate lactoferrin into biodegradable polymeric nanoparticles and optimized the formulation using the design of experiments approach. A monodisperse nanoparticles population was obtained with an average size around 130 nm and positive surface charge. Pharmacokinetic and pharmacodynamic behaviour were improved by the nanoparticles showing a prolonged lactoferrin release profile. Lactoferrin nanoparticles were non-cytotoxic and non-irritant neither in vitro nor in vivo. Moreover, nanoparticles exhibited significantly increased anti-inflammatory efficacy in cell culture and preclinical assays. In conclusion, lactoferrin loaded nanoparticles constitute a safe and novel nanotechnological tool suitable for the treatment of ocular inflammation.


Subject(s)
Lactoferrin , Nanoparticles , Administration, Ophthalmic , Animals , Anterior Eye Segment , Biological Availability , Eye Diseases/drug therapy , Humans , Inflammation/drug therapy , Ophthalmic Solutions , Particle Size , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...