ABSTRACT
The interface between an electrolyte solution and a metal electrode coated with an oxidatively adsorbed, redox-active monolayer of long-chain thiols has been examined from a thermodynamic point of view. The electrode potential is assumed to vary within the region where no reductive desorption of the thiol occurs, so that the interface may formally be regarded as ideally polarizable. The analysis leads to an expression describing the potential dependence of interfacial tension in terms of the charge density on the metal, salt concentration, dielectric properties of the organic film, and the redox properties of the active terminal groups, which vary with the (average) distance from the electrode surface. This result generalizes the classical Lippmann equation to modified electrodes of the type considered.