Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 41(21): 12338-12346, 2023.
Article in English | MEDLINE | ID: mdl-36744526

ABSTRACT

Epidemiological link between HPV and SLE is evolving. The possibility of HPV infection-induced molecular mimicry and systemic lupus erythematosus (SLE) was elucidated through detailed in silico analyses. Conserved regions in the structural protein sequences of high-risk HPV types were inferred, and sequence homologies between viral and human peptides were identified to delineate proteins implicated in SLE. B-cell epitopes and MHC-class II binding were compiled using Immune Epitope Database and ProPred II analysis tool. Molecular modeling and molecular dynamics/simulation (MDS) were performed using AutoDock Vina and GROMACS, respectively. Sequence alignment revealed 32 conserved regions, and 27/32 viral peptides showed varying similarities to human peptides, rich in B-cell epitopes with superior accessibility, high hydrophilicity, antigenicity and disposition to bind many class-II HLA alleles. Molecular docking of 13 viral peptides homologous (100%) to human peptides implicated in SLE showed that VIR-PEP1 (QLFNKPYWL) and VIR-PEP2 (DTYRFVTS) exhibited higher binding affinities than corresponding human peptides to SLE predisposing HLA-DRB1 allele. MDS of these peptides showed that the viral peptides had superior folding, compactness, and a higher number of hydrogen bonds than human peptides throughout the simulation period. SASA analysis revealed that the VIR-PEP1&2 fluctuated less frequently than corresponding human peptides. MM-PBSA revealed that the VIR-PEP2 complex exhibited higher binding energy than the human peptide complex. This suggests that highly conserved structural peptides of high-risk HPV types homologous to human peptides could compete and bind avidly to the HLA allele associated with SLE and predispose HPV-infected individuals to SLE through molecular mimicry.Communicated by Ramaswamy H. Sarma.


Subject(s)
Lupus Erythematosus, Systemic , Papillomavirus Infections , Humans , Epitopes, B-Lymphocyte , Molecular Mimicry , Molecular Docking Simulation , Peptides/chemistry , Epitopes, T-Lymphocyte
SELECTION OF CITATIONS
SEARCH DETAIL
...