Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Horm Behav ; 166: 105648, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39362071

ABSTRACT

Maternal obesity during perinatal period increases the risk of metabolic and behavioral deleterious outcomes in the offspring, since it is critical for brain development, maturation, and reorganization. These processes are highly modulated by the endocannabinoid system (ECS), which comprises the main lipid ligands anandamide and 2-arachidonoylglycerol, cannabinoid receptors 1 and 2 (CB1R and CB2R), and several metabolizing enzymes. The ECS is overactivated in obesity and it contributes to the physiological activity of the hypothalamus-pituitary-adrenal (HPA) axis, promoting stress relief. We have previously demonstrated that maternal high-fat diet during gestation and lactation programmed the food preference for fat in adolescent male offspring and adult male and female offspring. In the present study, we hypothesized that maternal diet-induced obesity would induce sex-specific changes of the ECS in the hypothalamus and dorsal hippocampus of rat offspring associated with dysregulation of the HPA axis and stress-related behavior in adolescence. Rat dams were fed a control (C) or an obesogenic high-fat high-sugar diet (OD) for nine weeks prior to mating and throughout gestation and lactation. Maternal obesity differentially altered the CB1R in the hypothalamus of neonate offspring, with significant increase in male but not in female pups, associated with decreased CB2R prior to obesity development. In adolescence, maternal obesity induced anxiety-like behavior only in adolescent females which was associated with increased content of CB1R in the dorsal hippocampus. Our findings suggest that the early origins of anxiety disorders induced by maternal exposome is associated with dysregulation of the brain ECS, with females being more susceptible.

2.
Mol Cell Endocrinol ; 542: 111522, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34843899

ABSTRACT

The endocannabinoid system (ECS) regulates brain development and function, energy metabolism and stress in a sex-, age- and tissue-dependent manner. The ECS comprises mainly the bioactive lipid ligands anandamide (AEA) and 2-aracdonoylglycerol (2-AG), cannabinoid receptors 1 and 2 (CB1 and CB2), and several metabolizing enzymes. The endocannabinoid tonus is increased in obesity, stimulating food intake and a preference for fat, reward, and lipid accumulation in peripheral tissues, as well as favoring a positive energy balance. Energy balance and stress responses share adaptive mechanisms regulated by the ECS that seem to underlie the complex relationship between feeding and emotional behavior. The ECS is also a key regulator of development. Environmental insults (diet, toxicants, and stress) in critical periods of developmental plasticity, such as gestation, lactation and adolescence, alter the ECS and may predispose individuals to the development of chronic diseases and behavioral changes in the long term. This review is focused on the ECS and the developmental origins of health and disease (DOHaD).


Subject(s)
Endocannabinoids , Energy Metabolism , Energy Metabolism/physiology , Female , Humans , Lactation , Obesity/metabolism , Receptor, Cannabinoid, CB1/metabolism
3.
Endocrine ; 67(1): 180-189, 2020 01.
Article in English | MEDLINE | ID: mdl-31494802

ABSTRACT

PURPOSE: Early weaning (EW) is a stressful condition that programmes a child to be overweight in adult life. Fat mass depends on glucocorticoids (GC) to regulate adipogenesis and lipogenesis. We hypothesised that the increased adiposity in models of EW was due to a disturbed HPA axis and/or disrupted GC function. METHODS: We used two experimental models, pharmacological early weaning (PEW, dams were bromocriptine-treated) and non-pharmacological early weaning (NPEW, dams' teats were wrapped with a bandage), which were initiated during the last 3 days of lactation. Offspring from both genders was analysed on postnatal day 180. RESULTS: Offspring in both models were overweight with increased visceral fat mass, but plasma corticosterone was increased in both genders in the PEW group but not the NPEW group. NPEW males had increased GRα expression in visceral adipose tissue (VAT), and GRα expression decreased in PEW males in subcutaneous adipose tissue (SAT). Females in both EW groups had increased 11ßHSD1 expression in SAT. PEW males had increased C/EBPß expression in SAT. PEW females had lower PPARy and FAS expression in VAT than the NPEW females. We detected a sex dimorphism in VAT and SAT in the EW groups regarding 11ßHSD1, GRα and C/EBPß expression. CONCLUSIONS: The accumulated adiposity induced by EW exhibited distinct mechanisms depending on gender, specific fat deposition and GC metabolism and action. The higher proportion of VAT/SAT in both sets of EW males may be related to the action of GC in these tissues, and the higher conversion of GC in SAT in females may explain the differences in the fat distribution.


Subject(s)
Glucocorticoids , Hypothalamo-Hypophyseal System , Animals , Female , Intra-Abdominal Fat , Male , Pituitary-Adrenal System , Rats , Rats, Wistar , Subcutaneous Fat , Weaning
4.
Int J Mol Sci ; 19(10)2018 Oct 09.
Article in English | MEDLINE | ID: mdl-30304827

ABSTRACT

Maternal smoking increases obesogenesis in the progeny. Obesity is associated with several hormonal dysfunctions. In a rat model of postnatal tobacco smoke exposure, we previously reported increased central fat depot and disruption of some hormonal systems in the adult offspring. As both glucocorticoids and vitamin D alter lipogenesis and adipogenesis, here we evaluated the metabolism of these two hormones in visceral adipose tissue (VAT) and liver by Western blotting, and possible associations with lipogenesis biomarkers in adult rats that were exposed to tobacco smoke during their suckling period. At postnatal day (PN) 3, dams and offspring of both sexes were exposed (S group) or not (C group) to tobacco smoke, 4 × 1 h/day. At PN180, corticosteronemia was lower in S male and higher in S female offspring, without alterations in peripheral glucocorticoid metabolism and receptor. Adrenal ACTH receptor (MC2R) was higher in both sexes of S group. Despite unchanged serum vitamin D, liver 25-hydroxylase was higher in both sexes of S group. Male S offspring had higher 1α-hydroxylase, acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS) in VAT. Both sexes showed increased ACC protein content and reduced sirtuin mRNA in liver. Male S offspring had lower liver peroxisome proliferator-activated receptor-α. Tobacco exposure during lactation induced abdominal obesity in both sexes via distinct mechanisms. Males and females seem to develop HPA-axis dysfunction instead of changes in glucocorticoid metabolism and action. Lipogenesis in VAT and liver, as well as vitamin D status, are more influenced by postnatal smoke exposure in male than in female adult rat offspring.


Subject(s)
Breast Feeding , Glucocorticoids/metabolism , Maternal Exposure/adverse effects , Obesity/etiology , Obesity/metabolism , Smoking/adverse effects , Vitamin D/metabolism , Adipose Tissue/metabolism , Animals , Female , Glucocorticoids/blood , Lactation , Lipid Metabolism , Lipogenesis , Liver/metabolism , Male , Obesity/blood , Rats , Receptors, Corticotropin/metabolism , Vitamin D/blood
5.
Endocrine ; 57(1): 60-71, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28527122

ABSTRACT

PURPOSE: Children from smoking mothers have a higher risk of developing obesity and associated comorbidities later in life. Different experimental models have been used to assess the mechanisms involved with this increased risk. Using a rat model of neonatal nicotine exposure via implantation of osmotic minipumps in lactating dams, we have previously shown marked sexual dimorphisms regarding metabolic and endocrine outcomes in the adult progeny. Considering that more than four thousand substances are found in tobacco smoke besides nicotine, we then studied a rat model of neonatal tobacco smoke exposure: adult male offspring had hyperphagia, obesity, hyperglycemia, hypertriglyceridemia, secondary hyperthyroidism and lower adrenal hormones. Since litters were culled to include only males and since sexual dimorphisms had already been identified in the nicotine exposure model, here we also evaluated the effects of tobacco smoke exposure during lactation on females. METHODS: Wistar rat dams and their pups were separated into two groups of 8 litters each: SMOKE (4 cigarettes per day, from postnatal day 3 to 21) and CONTROL (filtered air). Offspring of both sexes were euthanized at PN21 and PN180. RESULTS: Changes in male offspring corroborated previous data. At weaning, females showed lower body mass gain and serum triglycerides, but no alterations in visceral fat and hormones. At adulthood, females had higher body mass, hyperphagia, central obesity, hyperleptinemia, hypercholesterolemia, hypercorticosteronemia, but no change in serum TSH and T3, and adrenal catecholamine CONCLUSIONS: Sexual dimorphisms were observed in several parameters, thus indicating that metabolic and hormonal changes due to smoke exposure during development are sex-dependent.


Subject(s)
Adiposity/drug effects , Eating/drug effects , Hyperphagia/chemically induced , Tobacco Smoke Pollution/adverse effects , Triglycerides/blood , Animals , Animals, Newborn , Female , Hyperphagia/blood , Lactation , Rats , Rats, Wistar
6.
J Nutr Biochem ; 39: 117-125, 2017 01.
Article in English | MEDLINE | ID: mdl-27833052

ABSTRACT

Brown adipose tissue (BAT) dysfunction is associated with obesity and its comorbidities, such as hypertension, and the improvement of BAT function seems important for obesity management. Here we investigated the effects of dietary calcium supplementation on BAT autonomic nerve activity, sympathoadrenal function and cardiovascular parameters in adult obese rats that were raised in small litters (SL group). Three days after birth, SL litters were adjusted to three pups to induce early overfeeding. The control group remained with 10 pups/litter until weaning (NL group). At PN120, the SL group was randomly divided into the following: rats fed with standard chow (SL) and rats fed with dietary calcium carbonate supplementation (SL-Ca, 10g/kg chow). Animals were killed either at PN120 or PN180. At both ages, SL rats had higher BAT autonomic nervous system activity, mass and adipocyte area, as well as increased heart rate and blood pressure (systolic and diastolic); 2 months of calcium supplementation normalized these parameters. At PN180 only, UCP1 and TRß1 in BAT were decreased in SL rats. These changes were also prevented by calcium treatment. Also at PN180, the SL group presented higher tyrosine hydroxylase and adrenal catecholamine contents, as well as lower hypothalamic POMC and MC4R contents. Calcium supplementation did not revert these alterations. Thus, we demonstrated that dietary calcium supplementation was able to improve cardiovascular parameters and BAT thermogenesis capacity in adult animals that were early overfed during lactation.


Subject(s)
Adipose Tissue, Brown/drug effects , Animal Nutritional Physiological Phenomena , Calcium, Dietary/pharmacology , Hyperphagia/physiopathology , Adipocytes/drug effects , Adipocytes/metabolism , Adipose Tissue, Brown/physiopathology , Animals , Blood Pressure/drug effects , Body Mass Index , Cardiovascular System/drug effects , Cardiovascular System/metabolism , Dietary Supplements , Female , Hypothalamus/drug effects , Hypothalamus/metabolism , Male , Obesity/drug therapy , Pro-Opiomelanocortin/metabolism , Rats , Rats, Wistar , Receptor, Melanocortin, Type 4/metabolism , Thermogenesis/drug effects , Weaning
7.
Thyroid ; 26(1): 134-43, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26538454

ABSTRACT

BACKGROUND: Thyroid hormone and leptin are essential regulators of energy homeostasis. Both hormones stimulate energy expenditure but have opposite effects on appetite. The mechanisms behind food intake regulation in thyroid dysfunctions are poorly understood. It has been shown that hypothyroid rats exhibited impaired leptin anorexigenic effect and signaling in total hypothalamus, even though they were hypophagic. It was hypothesized that hypothyroidism modulates the expression of neuropeptides: orexigenic neuropeptide Y (NPY) and anorexigenic proopiomelanocortin (POMC), independently of inducing nuclei-specific changes in hypothalamic leptin signaling. METHODS: Adult male rats were rendered hypothyroid by administration of 0.03% methimazole in the drinking water for 21 days. Protein content of NPY, POMC, and leptin signaling (the signal transducer and activator of transcription 3 [STAT3] pathway) were evaluated by Western blot, and mRNA levels by real time reverse transcription polymerase chain reaction in arcuate (ARC), ventromedial (VMN), and paraventricular (PVN) hypothalamic nuclei isolated from euthyroid (eu) and hypothyroid (hypo) rats. Leptin anorexigenic effect was tested by recording food intake for two hours after intracerebroventricular (i.c.v.) administration of leptin. Statistical differences were considered significant at p ≤ 0.05. RESULTS: Hypothyroidism was confirmed by decreased serum triiodothyronine, thyroxine, and increased thyrotropin, in addition to increased levels of pro-TRH mRNA in PVN and Dio2 mRNA in the ARC of hypo rats. Hypothyroidism decreased body weight and food intake associated with decreased protein content of NPY and increased content of POMC in the ARC. Conversely, hypothyroidism induced central resistance to the acute anorexigenic effect of leptin, since while euthyroid rats displayed reduced food intake after leptin i.c.v. injection, hypothyroid rats showed no response. Hypothyroid rats exhibited decreased leptin receptor (ObRb) protein content in ARC and VMN but not in PVN nucleus. ObRb protein changes were concomitant with decreased phosphorylated STAT3 in the ARC, and decreased total STAT3 in VMN and PVN. However, hypothyroidism did not affect mRNA levels of Lepr or Stat3 in the hypothalamic nuclei. CONCLUSIONS: Experimental hypothyroidism induced a negative energy balance accompanied by decreased NPY and increased POMC protein content in the ARC, resulting in predominance of anorexigenic pathways, despite central leptin resistance and impairment of the leptin signaling cascade in a nuclei-specific manner.


Subject(s)
Appetite Regulation , Arcuate Nucleus of Hypothalamus/metabolism , Feeding Behavior , Hypothyroidism/metabolism , Leptin/metabolism , Neuropeptide Y/metabolism , Pro-Opiomelanocortin/metabolism , Signal Transduction , Animals , Arcuate Nucleus of Hypothalamus/physiopathology , Disease Models, Animal , Eating , Energy Metabolism , Hypothyroidism/chemically induced , Hypothyroidism/genetics , Hypothyroidism/physiopathology , Hypothyroidism/psychology , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , Leptin/genetics , Male , Methimazole , Neuropeptide Y/genetics , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/physiopathology , Phosphorylation , Pro-Opiomelanocortin/genetics , Rats, Wistar , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Thyrotropin-Releasing Hormone/genetics , Thyrotropin-Releasing Hormone/metabolism , Ventromedial Hypothalamic Nucleus/metabolism , Ventromedial Hypothalamic Nucleus/physiopathology , Weight Loss , Iodothyronine Deiodinase Type II
8.
J Endocrinol ; 215(1): 129-35, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22875962

ABSTRACT

Leptin has been shown to regulate the hypothalamus-pituitary-thyroid axis, acting primarily through the STAT3 pathway triggered through the binding of leptin to the long-chain isoform of the leptin receptor, ObRb. We previously demonstrated that although hyperthyroid rats presented leptin effects on TSH secretion, those effects were abolished in hypothyroid rats. We addressed the hypothesis that changes in the STAT3 pathway might explain the lack of TSH response to leptin in hypothyroidism by evaluating the protein content of components of leptin signalling via the STAT3 pathway in the hypothalamus and pituitary of hypothyroid (0·03% methimazole in the drinking water/21 days) and hyperthyroid (thyroxine 5 µg/100 g body weight /5 days) rats. Hypothyroid rats exhibited decreased ObRb and phosphorylated STAT3 (pSTAT3) protein in the hypothalamus, and in the pituitary gland they exhibited decreased ObRb, total STAT3, pSTAT3 and SOCS3 (P<0·05). Except for a modest decrease in pituitary STAT3, no other alterations were observed in hyperthyroid rats. Moreover, unlike euthyroid rats, the hypothyroid rats did not exhibit a reduction in food ingestion after a single injection of leptin (0·5 mg/kg body weight). Therefore, hypothyroidism decreased ObRb-STAT3 signalling in the hypothalamus and pituitary gland, which likely contributes to the loss of leptin action on food intake and TSH secretion, as previously observed in hypothyroid rats.


Subject(s)
Anorexia/chemically induced , Hypothalamus/metabolism , Hypothyroidism/metabolism , Leptin/metabolism , Leptin/pharmacology , Pituitary Gland/metabolism , Receptors, Leptin/metabolism , STAT3 Transcription Factor/metabolism , Acute Disease , Animals , Anorexia/etiology , Anorexia/metabolism , Anorexia/pathology , Down-Regulation , Drug Resistance/physiology , Eating/drug effects , Eating/physiology , Hypothalamus/drug effects , Hypothyroidism/complications , Hypothyroidism/pathology , Male , Pituitary Gland/drug effects , Rats , Rats, Wistar , Signal Transduction/drug effects , Thyrotropin/metabolism
9.
Regul Pept ; 171(1-3): 43-7, 2011 Nov 10.
Article in English | MEDLINE | ID: mdl-21771616

ABSTRACT

Neuropeptide Y (NPY) inhibits TRH neurons in fed state, and hypothalamic NPY higher expression during fasting has been proposed to be involved in fasting-induced suppression of the hypothalamus-pituitary-thyroid (HPT) axis. We investigated the role of central Y5 receptors in the control of thyrotropin (TSH) and thyroid hormone (TH) secretion. Fed and fasting rats received twice daily central injections (3rd ventricle) of Y5 receptor antagonist (CGP71683; 15nmol/rat) for 72h. Fasted rats also received a single central injection of CGP71683 (15nmol/rat) at the end of 72h of fasting. In fed rats, Y5 receptor blockade reduced total food intake by 32% and body mass by almost 10% (p<0.01), corroborating the role of this receptor in food intake control. 72h-fasted rats exhibited a 4-fold increase in serum TSH (p<0.001), 1h after a single injection of Y5 antagonist. Also with multiple injections during 72h of fasting, Y5 blockade resulted in activation of thyroid axis, as demonstrated by a 3-times rise in serum T4 (p<0.001), accompanied by unchanged TSH and T3. In fed rats, the chronic central administration of CGP71683 resulted in reduced total serum T4 without changes in free T4 and TSH. Serum leptin and PYY were not altered by the NPY central blockade in both fed and fasted rats, suggesting no role of these hormones in the alterations observed. Therefore, the inhibition of central Y5 neurotransmission resulted in activation of thyroid axis during fasting suggesting that NPY-Y5 receptors contribute to fasting-induced TSH and TH suppression.


Subject(s)
Fasting/metabolism , Pituitary-Adrenal System/pathology , Receptors, Neuropeptide Y/metabolism , Thyroid Hormones/metabolism , Thyrotropin/metabolism , Animals , Fasting/adverse effects , Hypothalamus/metabolism , Hypothalamus/pathology , Leptin/blood , Naphthalenes/pharmacology , Neuropeptide Y/antagonists & inhibitors , Neuropeptide Y/metabolism , Pituitary-Adrenal System/metabolism , Pyrimidines/pharmacology , Rats , Receptors, Neuropeptide Y/antagonists & inhibitors , Thyroid Hormones/blood , Thyrotropin/blood
SELECTION OF CITATIONS
SEARCH DETAIL