Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2100, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453949

ABSTRACT

Increased recruitment of transitional and non-classical monocytes in the lung during SARS-CoV-2 infection is associated with COVID-19 severity. However, whether specific innate sensors mediate the activation or differentiation of monocytes in response to different SARS-CoV-2 proteins remain poorly characterized. Here, we show that SARS-CoV-2 Spike 1 but not nucleoprotein induce differentiation of monocytes into transitional or non-classical subsets from both peripheral blood and COVID-19 bronchoalveolar lavage samples in a NFκB-dependent manner, but this process does not require inflammasome activation. However, NLRP3 and NLRC4 differentially regulated CD86 expression in monocytes in response to Spike 1 and Nucleoprotein, respectively. Moreover, monocytes exposed to Spike 1 induce significantly higher proportions of Th1 and Th17 CD4 + T cells. In contrast, monocytes exposed to Nucleoprotein reduce the degranulation of CD8 + T cells from severe COVID-19 patients. Our study provides insights in the differential impact of innate sensors in regulating monocytes in response to different SARS-CoV-2 proteins, which might be useful to better understand COVID-19 immunopathology and identify therapeutic targets.


Subject(s)
COVID-19 , Inflammasomes , Humans , Calcium-Binding Proteins/metabolism , CARD Signaling Adaptor Proteins/metabolism , COVID-19/pathology , Inflammasomes/metabolism , Monocytes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nucleoproteins/metabolism , SARS-CoV-2/metabolism
2.
EBioMedicine ; 81: 104090, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35665682

ABSTRACT

BACKGROUND: Dysfunction of CD8+ T cells in people living with HIV-1 (PLWH) receiving anti-retroviral therapy (ART) has restricted the efficacy of dendritic cell (DC)-based immunotherapies against HIV-1. Heterogeneous immune exhaustion and metabolic states of CD8+ T cells might differentially associate with dysfunction. However, specific parameters associated to functional restoration of CD8+ T cells after DC treatment have not been investigated. METHODS: We studied association of restoration of functional HIV-1-specific CD8+ T cell responses after stimulation with Gag-adjuvant-primed DC with ART duration, exhaustion, metabolic and memory cell subsets profiles. FINDINGS: HIV-1-specific CD8+ T cell responses from a larger proportion of PLWH on long-term ART (more than 10 years; LT-ARTp) improved polyfunctionality and capacity to eliminate autologous p24+ infected CD4+ T cells in vitro. In contrast, functional improvement of CD8+ T cells from PLWH on short-term ART (less than a decade; ST-ARTp) after DC treatment was limited. This was associated with lower frequencies of central memory CD8+ T cells, increased co-expression of PD1 and TIGIT and reduced mitochondrial respiration and glycolysis induction upon TCR activation. In contrast, CD8+ T cells from LT-ARTp showed increased frequencies of TIM3+ PD1- cells and preserved induction of glycolysis. Treatment of dysfunctional CD8+ T cells from ST-ARTp with combined anti-PD1 and anti-TIGIT antibodies plus a glycolysis promoting drug restored their ability to eliminate infected CD4+ T cells. INTERPRETATION: Together, our study identifies specific immunometabolic parameters for different PLWH subgroups potentially useful for future personalized DC-based HIV-1 vaccines. FUNDING: NIH (R21AI140930), MINECO/FEDER RETOS (RTI2018-097485-A-I00) and CIBERINF grants.


Subject(s)
HIV Infections , HIV-1 , Anti-Retroviral Agents/pharmacology , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Dendritic Cells , HIV Infections/drug therapy , Humans
3.
Br J Pharmacol ; 179(7): 1395-1410, 2022 04.
Article in English | MEDLINE | ID: mdl-34773639

ABSTRACT

BACKGROUND: Inflammasomes are cytosolic multiprotein complexes which, upon assembly, activate the maturation and secretion of the inflammatory cytokines IL-1ß and IL-18. However, participation of the NLRP3 inflammasome in ischaemic stroke remains controversial. Our aims were to determine the role of NLRP3 in brain ischaemia, and explore the mechanism involved in the potential protective effect of the neurovascular unit. METHODS: WT and NLRP3 knock-out mice were subjected to ischaemia by middle cerebral artery occlusion (60 min) with or without treatment with MCC950 at different time points post-stroke. Brain injury was measured histologically with 2,3,5-triphenyltetrazolium chloride (TTC) staining. RESULTS: We identified a time-dependent dual effect of NLRP3. While neither the pre-treatment with MCC950 nor the genetic approach (NLRP3 KO) proved to be neuroprotective, post-reperfusion treatment with MCC950 significantly reduced the infarct volume in a dose-dependent manner. Importantly, MCC950 improved the neuro-motor function and reduced the expression of different pro-inflammatory cytokines (IL-1ß and TNF-α), NLRP3 inflammasome components (NLRP3 and pro-caspase-1), protease expression (MMP9), and endothelial adhesion molecules (ICAM and VCAM). We observed a marked protection of the blood-brain barrier (BBB), which was also reflected in the recovery of the tight junction proteins (ZO-1 and Claudin-5). Additionally, MCC950 produced a reduction of the CCL2 chemokine in blood serum and in brain tissue, which lead to a reduction in the immune cell infiltration. CONCLUSIONS: These findings suggest that post-reperfusion NLRP3 inhibition may be an effective acute therapy for protecting the blood-brain barrier in cerebral ischaemia with potential clinical translation.


Subject(s)
Brain Ischemia , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Stroke , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Brain Ischemia/metabolism , Cytokines/metabolism , Furans/pharmacology , Furans/therapeutic use , Indenes , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Stroke/drug therapy , Sulfonamides , Tumor Necrosis Factor-alpha/drug effects
4.
Eur J Immunol ; 51(3): 634-647, 2021 03.
Article in English | MEDLINE | ID: mdl-33251605

ABSTRACT

SARS-CoV-2 infection causes an abrupt response by the host immune system, which is largely responsible for the outcome of COVID-19. We investigated whether the specific immune responses in the peripheral blood of 276 patients were associated with the severity and progression of COVID-19. At admission, dramatic lymphopenia of T, B, and NK cells is associated with severity. Conversely, the proportion of B cells, plasmablasts, circulating follicular helper T cells (cTfh) and CD56- CD16+ NK-cells increased. Regarding humoral immunity, levels of IgM, IgA, and IgG were unaffected, but when degrees of severity were considered, IgG was lower in severe patients. Compared to healthy donors, complement C3 and C4 protein levels were higher in mild and moderate, but not in severe patients, while the activation peptide of C5 (C5a) increased from the admission in every patient, regardless of their severity. Moreover, total IgG, the IgG1 and IgG3 isotypes, and C4 decreased from day 0 to day 10 in patients who were hospitalized for more than two weeks, but not in patients who were discharged earlier. Our study provides important clues to understand the immune response observed in COVID-19 patients, associating severity with an imbalanced humoral response, and identifying new targets for therapeutic intervention.


Subject(s)
B-Lymphocytes/immunology , COVID-19/pathology , Immunoglobulins/blood , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Helper-Inducer/immunology , Aged , COVID-19/immunology , Complement C3/analysis , Complement C4/analysis , Complement C5/analysis , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Lymphocyte Count , Lymphopenia/immunology , Male , Middle Aged , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/pathology
5.
medRxiv ; 2020 May 16.
Article in English | MEDLINE | ID: mdl-32511573

ABSTRACT

The SARS-CoV-2 is responsible for the pandemic COVID-19 in infected individuals, who can either exhibit mild symptoms or progress towards a life-threatening acute respiratory distress syndrome (ARDS). It is known that exacerbated inflammation and dysregulated immune responses involving T and myeloid cells occur in COVID-19 patients with severe clinical progression. However, the differential contribution of specific subsets of dendritic cells and monocytes to ARDS is still poorly understood. In addition, the role of CD8+ T cells present in the lung of COVID-19 patients and relevant for viral control has not been characterized. With the aim to improve the knowledge in this area, we developed a cross-sectional study, in which we have studied the frequencies and activation profiles of dendritic cells and monocytes present in the blood of COVID-19 patients with different clinical severity in comparison with healthy control individuals. Furthermore, these subpopulations and their association with antiviral effector CD8+ T cell subsets were also characterized in lung infiltrates from critical COVID-19 patients. Collectively, our results suggest that inflammatory transitional and non-classical monocytes preferentially migrate from blood to lungs in patients with severe COVID-19. CD1c+ conventional dendritic cells also followed this pattern, whereas CD141+ conventional and CD123hi plasmacytoid dendritic cells were depleted from blood but were absent in the lungs. Thus, this study increases the knowledge on the pathogenesis of COVID-19 disease and could be useful for the design of therapeutic strategies to fight SARS-CoV-2 infection.

6.
PLoS One ; 7(3): e32989, 2012.
Article in English | MEDLINE | ID: mdl-22457728

ABSTRACT

Pigment epithelium-derived factor (PEDF), a member of the serine protease inhibitor (SERPIN) superfamily, displays a potent antiangiogenic and antimetastatic activity in a broad range of tumor types. Melanocytes and low aggressive melanoma cells secrete high levels of PEDF, while its expression is lost in highly aggressive melanomas. PEDF efficiently abrogates a number of functional properties critical for the acquisition of metastatic ability by melanoma cells, such as neovascularization, proliferation, migration, invasiveness and extravasation. In this study, we identify hypoxia as a relevant negative regulator of PEDF in melanocytes and low aggressive melanoma cells. PEDF was regulated at the protein level. Importantly, although downregulation of PEDF was induced by inhibition of 2-oxoglutarate-dependent dioxygenases, it was independent of the hypoxia inducible factor (HIF), a key mediator of the adaptation to hypoxia. Decreased PEDF protein was not mediated by inhibition of translation through untranslated regions (UTRs) in melanoma cells. Degradation by metalloproteinases, implicated on PEDF degradation in retinal pigment epithelial cells, or by the proteasome, was also excluded as regulatory mechanism in melanoma cells. Instead, we found that degradation by autophagy was critical for PEDF downregulation under hypoxia in human melanoma cells. Our findings show that hypoxic conditions encountered during primary melanoma growth downregulate antiangiogenic and antimetastasic PEDF by a posttranslational mechanism involving degradation by autophagy and could therefore contribute to the acquisition of highly metastatic potential characteristic of aggressive melanoma cells.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Transcription Factors/physiology , Cell Hypoxia , Eye Proteins/metabolism , Melanoma/metabolism , Nerve Growth Factors/metabolism , Serpins/metabolism , Down-Regulation , Humans , Melanoma/pathology , Neoplasm Metastasis , Tumor Cells, Cultured , Untranslated Regions
7.
Cell Mol Life Sci ; 66(13): 2167-80, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19458911

ABSTRACT

Hypoxia-inducible factor-1alpha (HIF-1alpha) protein is degraded under normoxia by its association to von Hippel-Lindau protein (pVHL) and further proteasomal digestion. However, human renal cells HK-2 treated with 15-deoxy-Delta(12,14)-prostaglandin-J(2) (15d-PGJ(2)) accumulate HIF-1alpha in normoxic conditions. Thus, we aimed to investigate the mechanism involved in this accumulation. We found that 15d-PGJ(2) induced an over-accumulation of HIF-1alpha in RCC4 cells, which lack pVHL and in HK-2 cells treated with inhibitors of the pVHL-proteasome pathway. These results indicated that pVHL-proteasome-independent mechanisms are involved, and therefore we aimed to ascertain them. We have identified a new lysosomal-dependent mechanism of HIF-1alpha degradation as a target for 15d-PGJ(2) based on: (1) HIF-1alpha colocalized with the specific lysosomal marker Lamp-2a, (2) 15d-PGJ(2) inhibited the activity of cathepsin B, a lysosomal protease, and (3) inhibition of lysosomal activity did not result in over-accumulation of HIF-1alpha in 15d-PGJ(2)-treated cells. Therefore, expression of HIF-1alpha is also modulated by lysosomal degradation.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lysosomes/metabolism , Prostaglandin D2/analogs & derivatives , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Animals , Calcium/metabolism , Calpain/metabolism , Cathepsin B/metabolism , Cell Line , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Kidney/cytology , Prostaglandin D2/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...