Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
Kidney Int ; 105(4): 844-864, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38154558

ABSTRACT

Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below age 30 years. Many monogenic forms have been discovered due to comprehensive genetic testing like exome sequencing. However, disease-causing variants in known disease-associated genes only explain a proportion of cases. Here, we aim to unravel underlying molecular mechanisms of syndromic CAKUT in three unrelated multiplex families with presumed autosomal recessive inheritance. Exome sequencing in the index individuals revealed three different rare homozygous variants in FOXD2, encoding a transcription factor not previously implicated in CAKUT in humans: a frameshift in the Arabic and a missense variant each in the Turkish and the Israeli family with segregation patterns consistent with autosomal recessive inheritance. CRISPR/Cas9-derived Foxd2 knockout mice presented with a bilateral dilated kidney pelvis accompanied by atrophy of the kidney papilla and mandibular, ophthalmologic, and behavioral anomalies, recapitulating the human phenotype. In a complementary approach to study pathomechanisms of FOXD2-dysfunction-mediated developmental kidney defects, we generated CRISPR/Cas9-mediated knockout of Foxd2 in ureteric bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important for kidney/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a shift toward a stromal cell identity. Histology of Foxd2 knockout mouse kidneys confirmed increased fibrosis. Further, genome-wide association studies suggest that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Thus, our studies help in genetic diagnostics of monogenic CAKUT and in understanding of monogenic and multifactorial kidney diseases.


Subject(s)
Embryonic Structures , Forkhead Transcription Factors , Kidney Diseases , Kidney , Nephrons , Urinary Tract , Urogenital Abnormalities , Vesico-Ureteral Reflux , Adult , Animals , Humans , Mice , Genome-Wide Association Study , Kidney/abnormalities , Kidney/embryology , Kidney Diseases/genetics , Mice, Knockout , Nephrons/embryology , Transcription Factors/genetics , Urogenital Abnormalities/genetics , Vesico-Ureteral Reflux/genetics , Forkhead Transcription Factors/deficiency , Forkhead Transcription Factors/metabolism
2.
Hum Mol Genet ; 32(17): 2717-2734, 2023 08 26.
Article in English | MEDLINE | ID: mdl-37369025

ABSTRACT

Inherited disorders of mitochondrial metabolism, including isolated methylmalonic aciduria, present unique challenges to energetic homeostasis by disrupting energy-producing pathways. To better understand global responses to energy shortage, we investigated a hemizygous mouse model of methylmalonyl-CoA mutase (Mmut)-type methylmalonic aciduria. We found Mmut mutant mice to have reduced appetite, energy expenditure and body mass compared with littermate controls, along with a relative reduction in lean mass but increase in fat mass. Brown adipose tissue showed a process of whitening, in line with lower body surface temperature and lesser ability to cope with cold challenge. Mutant mice had dysregulated plasma glucose, delayed glucose clearance and a lesser ability to regulate energy sources when switching from the fed to fasted state, while liver investigations indicated metabolite accumulation and altered expression of peroxisome proliferator-activated receptor and Fgf21-controlled pathways. Together, these shed light on the mechanisms and adaptations behind energy imbalance in methylmalonic aciduria and provide insight into metabolic responses to chronic energy shortage, which may have important implications for disease understanding and patient management.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Mice , Animals , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Energy Metabolism/genetics , Liver/metabolism
3.
Mamm Genome ; 34(2): 244-261, 2023 06.
Article in English | MEDLINE | ID: mdl-37160609

ABSTRACT

Rare diseases (RDs) are a challenge for medicine due to their heterogeneous clinical manifestations and low prevalence. There is a lack of specific treatments and only a few hundred of the approximately 7,000 RDs have an approved regime. Rapid technological development in genome sequencing enables the mass identification of potential candidates that in their mutated form could trigger diseases but are often not confirmed to be causal. Knockout (KO) mouse models are essential to understand the causality of genes by allowing highly standardized research into the pathogenesis of diseases. The German Mouse Clinic (GMC) is one of the pioneers in mouse research and successfully uses (preclinical) data obtained from single-gene KO mutants for research into monogenic RDs. As part of the International Mouse Phenotyping Consortium (IMPC) and INFRAFRONTIER, the pan-European consortium for modeling human diseases, the GMC expands these preclinical data toward global collaborative approaches with researchers, clinicians, and patient groups.Here, we highlight proprietary genes that when deleted mimic clinical phenotypes associated with known RD targets (Nacc1, Bach2, Klotho alpha). We focus on recognized RD genes with no pre-existing KO mouse models (Kansl1l, Acsf3, Pcdhgb2, Rabgap1, Cox7a2) which highlight novel phenotypes capable of optimizing clinical diagnosis. In addition, we present genes with intriguing phenotypic data (Zdhhc5, Wsb2) that are not presently associated with known human RDs.This report provides comprehensive evidence for genes that when deleted cause differences in the KO mouse across multiple organs, providing a huge translational potential for further understanding monogenic RDs and their clinical spectrum. Genetic KO studies in mice are valuable to further explore the underlying physiological mechanisms and their overall therapeutic potential.


Subject(s)
Rare Diseases , Mice , Animals , Humans , Mice, Knockout , Rare Diseases/genetics , Gene Knockout Techniques , Phenotype
4.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166760, 2023 10.
Article in English | MEDLINE | ID: mdl-37230398

ABSTRACT

The alternative oxidase, AOX, provides a by-pass of the cytochrome segment of the mitochondrial respiratory chain when the chain is unavailable. AOX is absent from mammals, but AOX from Ciona intestinalis is benign when expressed in mice. Although non-protonmotive, so does not contribute directly to ATP production, it has been shown to modify and in some cases rescue phenotypes of respiratory-chain disease models. Here we studied the effect of C. intestinalis AOX on mice engineered to express a disease-equivalent mutant of Uqcrh, encoding the hinge subunit of mitochondrial respiratory complex III, which results in a complex metabolic phenotype beginning at 4-5 weeks, rapidly progressing to lethality within a further 6-7 weeks. AOX expression delayed the onset of this phenotype by several weeks, but provided no long-term benefit. We discuss the significance of this finding in light of the known and hypothesized effects of AOX on metabolism, redox homeostasis, oxidative stress and cell signaling. Although not a panacea, the ability of AOX to mitigate disease onset and progression means it could be useful in treatment.


Subject(s)
Electron Transport Complex III , Mitochondria , Animals , Mice , Electron Transport Complex III/genetics , Electron Transport Complex III/metabolism , Mitochondria/metabolism , Oxidation-Reduction , Mitochondrial Membranes/metabolism , Phenotype , Transcription Factors/metabolism , Mammals/metabolism
5.
medRxiv ; 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36993625

ABSTRACT

Background: Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below 30 years of age. Many monogenic forms have been discovered mainly due to comprehensive genetic testing like exome sequencing (ES). However, disease-causing variants in known disease-associated genes still only explain a proportion of cases. Aim of this study was to unravel the underlying molecular mechanism of syndromic CAKUT in two multiplex families with presumed autosomal recessive inheritance. Methods and Results: ES in the index individuals revealed two different rare homozygous variants in FOXD2, a transcription factor not previously implicated in CAKUT in humans: a frameshift in family 1 and a missense variant in family 2 with family segregation patterns consistent with autosomal-recessive inheritance. CRISPR/Cas9-derived Foxd2 knock-out (KO) mice presented with bilateral dilated renal pelvis accompanied by renal papilla atrophy while extrarenal features included mandibular, ophthalmologic, and behavioral anomalies, recapitulating the phenotype of humans with FOXD2 dysfunction. To study the pathomechanism of FOXD2-dysfunction-mediated developmental renal defects, in a complementary approach, we generated CRISPR/Cas9-mediated KO of Foxd2 in ureteric-bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important in renal/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a cell identity shift towards a stromal cell identity. Histology of Foxd2 KO mouse kidneys confirmed increased fibrosis. Further, GWAS data (genome-wide association studies) suggests that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Conclusions: In summary, our data implicate that FOXD2 dysfunction is a very rare cause of autosomal recessive syndromic CAKUT and suggest disturbances of the PAX2-WNT4 cell signaling axis contribute to this phenotype.

6.
Sci Rep ; 12(1): 19793, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36396684

ABSTRACT

Gastro-intestinal stromal tumors and acute myeloid leukemia induced by activating stem cell factor receptor tyrosine kinase (KIT) mutations are highly malignant. Less clear is the role of KIT mutations in the context of breast cancer. Treatment success of KIT-induced cancers is still unsatisfactory because of primary or secondary resistance to therapy. Mouse models offer essential platforms for studies on molecular disease mechanisms in basic cancer research. In the course of the Munich N-ethyl-N-nitrosourea (ENU) mutagenesis program a mouse line with inherited polycythemia was established. It carries a base-pair exchange in the Kit gene leading to an amino acid exchange at position 824 in the activation loop of KIT. This KIT variant corresponds to the N822K mutation found in human cancers, which is associated with imatinib-resistance. C3H KitN824K/WT mice develop hyperplasia of interstitial cells of Cajal and retention of ingesta in the cecum. In contrast to previous Kit-mutant models, we observe a benign course of gastrointestinal pathology associated with prolonged survival. Female mutants develop mammary carcinomas at late onset and subsequent lung metastasis. The disease model complements existing oncology research platforms. It allows for addressing the role of KIT mutations in breast cancer and identifying genetic and environmental modifiers of disease progression.


Subject(s)
Breast Neoplasms , Gastrointestinal Stromal Tumors , Mice , Female , Humans , Animals , Penetrance , Mice, Inbred C3H , Proto-Oncogene Proteins c-kit/genetics , Gastrointestinal Stromal Tumors/genetics , Disease Models, Animal , Breast Neoplasms/genetics
7.
Nat Commun ; 13(1): 6830, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369285

ABSTRACT

Current concepts regarding the biology of aging are primarily based on studies aimed at identifying factors regulating lifespan. However, lifespan as a sole proxy measure for aging can be of limited value because it may be restricted by specific pathologies. Here, we employ large-scale phenotyping to analyze hundreds of markers in aging male C57BL/6J mice. For each phenotype, we establish lifetime profiles to determine when age-dependent change is first detectable relative to the young adult baseline. We examine key lifespan regulators (putative anti-aging interventions; PAAIs) for a possible countering of aging. Importantly, unlike most previous studies, we include in our study design young treated groups of animals, subjected to PAAIs prior to the onset of detectable age-dependent phenotypic change. Many PAAI effects influence phenotypes long before the onset of detectable age-dependent change, but, importantly, do not alter the rate of phenotypic change. Hence, these PAAIs have limited effects on aging.


Subject(s)
Aging , Longevity , Mice , Animals , Male , Longevity/genetics , Mice, Inbred C57BL , Aging/physiology , Phenotype
8.
Genet Med ; 24(11): 2399-2407, 2022 11.
Article in English | MEDLINE | ID: mdl-36083289

ABSTRACT

PURPOSE: RABGAP1 is a GTPase-activating protein implicated in a variety of cellular and molecular processes, including mitosis, cell migration, vesicular trafficking, and mTOR signaling. There are no known Mendelian diseases caused by variants in RABGAP1. METHODS: Through GeneMatcher, we identified 5 patients from 3 unrelated families with homozygous variants in the RABGAP1 gene found on exome sequencing. We established lymphoblastoid cells lines derived from an affected individual and her parents and performed RNA sequencing and functional studies. Rabgap1 knockout mice were generated and phenotyped. RESULTS: We report 5 patients presenting with a common constellation of features, including global developmental delay/intellectual disability, microcephaly, bilateral sensorineural hearing loss, and seizures, as well as overlapping dysmorphic features. Neuroimaging revealed common features, including delayed myelination, white matter volume loss, ventriculomegaly, and thinning of the corpus callosum. Functional analysis of patient cells revealed downregulated mTOR signaling and abnormal localization of early endosomes and lysosomes. Rabgap1 knockout mice exhibited several features in common with the patient cohort, including microcephaly, thinning of the corpus callosum, and ventriculomegaly. CONCLUSION: Collectively, our results provide evidence of a novel neurodevelopmental syndrome caused by biallelic loss-of-function variants in RABGAP1.


Subject(s)
Hydrocephalus , Intellectual Disability , Microcephaly , Neurodevelopmental Disorders , Animals , Mice , Female , Humans , Microcephaly/genetics , Pedigree , Intellectual Disability/genetics , Syndrome , Mice, Knockout , TOR Serine-Threonine Kinases , Neurodevelopmental Disorders/genetics
9.
Sci Rep ; 12(1): 14608, 2022 08 26.
Article in English | MEDLINE | ID: mdl-36028522

ABSTRACT

Animal models are an indispensable platform used in various research disciplines, enabling, for example, studies of basic biological mechanisms, pathological processes and new therapeutic interventions. In this study, we applied magnetic resonance imaging (MRI) to characterize the clinical picture of a novel N-ethyl-N-nitrosourea-induced Kit-mutant mouse in vivo. Seven C3H KitN824K/WT mutant animals each of both sexes and their littermates were monitored every other month for a period of twelve months. MRI relaxometry data of hematopoietic bone marrow and splenic tissue as well as high-resolution images of the gastrointestinal organs were acquired. Compared with controls, the mutants showed a dynamic change in the shape and volume of the cecum and enlarged Peyer´s patches were identified throughout the entire study. Mammary tumors were observed in the majority of mutant females and were first detected at eight months of age. Using relaxation measurements, a substantial decrease in longitudinal relaxation times in hematopoietic tissue was detected in mutants at one year of age. In contrast, transverse relaxation time of splenic tissue showed no differences between genotypes, except in two mutant mice, one of which had leukemia and the other hemangioma. In this study, in vivo MRI was used for the first time to thoroughly characterize the evolution of systemic manifestations of a novel Kit-induced tumor model and to document the observable organ-specific disease cascade.


Subject(s)
Magnetic Resonance Imaging , Mammary Neoplasms, Animal , Animals , Disease Progression , Female , Male , Mice , Mice, Inbred C3H
10.
Nat Methods ; 19(7): 803-811, 2022 07.
Article in English | MEDLINE | ID: mdl-35710609

ABSTRACT

The laboratory mouse ranks among the most important experimental systems for biomedical research and molecular reference maps of such models are essential informational tools. Here, we present a quantitative draft of the mouse proteome and phosphoproteome constructed from 41 healthy tissues and several lines of analyses exemplify which insights can be gleaned from the data. For instance, tissue- and cell-type resolved profiles provide protein evidence for the expression of 17,000 genes, thousands of isoforms and 50,000 phosphorylation sites in vivo. Proteogenomic comparison of mouse, human and Arabidopsis reveal common and distinct mechanisms of gene expression regulation and, despite many similarities, numerous differentially abundant orthologs that likely serve species-specific functions. We leverage the mouse proteome by integrating phenotypic drug (n > 400) and radiation response data with the proteomes of 66 pancreatic ductal adenocarcinoma (PDAC) cell lines to reveal molecular markers for sensitivity and resistance. This unique atlas complements other molecular resources for the mouse and can be explored online via ProteomicsDB and PACiFIC.


Subject(s)
Arabidopsis , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Arabidopsis/genetics , Carcinoma, Pancreatic Ductal/metabolism , Mass Spectrometry , Mice , Pancreatic Neoplasms/genetics , Proteome/analysis
11.
PLoS Genet ; 18(5): e1010190, 2022 05.
Article in English | MEDLINE | ID: mdl-35533204

ABSTRACT

Mitochondrial DNA (mtDNA) maintenance disorders are caused by mutations in ubiquitously expressed nuclear genes and lead to syndromes with variable disease severity and tissue-specific phenotypes. Loss of function mutations in the gene encoding the mitochondrial genome and maintenance exonuclease 1 (MGME1) result in deletions and depletion of mtDNA leading to adult-onset multisystem mitochondrial disease in humans. To better understand the in vivo function of MGME1 and the associated disease pathophysiology, we characterized a Mgme1 mouse knockout model by extensive phenotyping of ageing knockout animals. We show that loss of MGME1 leads to de novo formation of linear deleted mtDNA fragments that are constantly made and degraded. These findings contradict previous proposal that MGME1 is essential for degradation of linear mtDNA fragments and instead support a model where MGME1 has a critical role in completion of mtDNA replication. We report that Mgme1 knockout mice develop a dramatic phenotype as they age and display progressive weight loss, cataract and retinopathy. Surprisingly, aged animals also develop kidney inflammation, glomerular changes and severe chronic progressive nephropathy, consistent with nephrotic syndrome. These findings link the faulty mtDNA synthesis to severe inflammatory disease and thus show that defective mtDNA replication can trigger an immune response that causes age-associated progressive pathology in the kidney.


Subject(s)
Kidney Diseases , Mitochondrial Diseases , Animals , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Kidney/metabolism , Kidney Diseases/genetics , Mice , Mice, Knockout , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Mutation
12.
Commun Biol ; 5(1): 408, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35505192

ABSTRACT

Suitable animal models are essential for translational research, especially in the case of complex, multifactorial conditions, such as obesity. The non-inbred mouse (Mus musculus) line Titan, also known as DU6, is one of the world's longest selection experiments for high body mass and was previously described as a model for metabolic healthy (benign) obesity. The present study further characterizes the geno- and phenotypes of this non-inbred mouse line and tests its suitability as an interventional obesity model. In contrast to previous findings, our data suggest that Titan mice are metabolically unhealthy obese and short-lived. Line-specific patterns of genetic invariability are in accordance with observed phenotypic traits. Titan mice also show modifications in the liver transcriptome, proteome, and epigenome linked to metabolic (dys)regulations. Importantly, dietary intervention partially reversed the metabolic phenotype in Titan mice and significantly extended their life expectancy. Therefore, the Titan mouse line is a valuable resource for translational and interventional obesity research.


Subject(s)
Obesity , Quality Indicators, Health Care , Animals , Life Expectancy , Mice , Mice, Inbred Strains , Mice, Obese , Obesity/genetics , Obesity/metabolism , Phenotype
13.
Dis Model Mech ; 15(3)2022 03 01.
Article in English | MEDLINE | ID: mdl-34964047

ABSTRACT

Understanding the shared genetic aetiology of psychiatric and medical comorbidity in neurodevelopmental disorders (NDDs) could improve patient diagnosis, stratification and treatment options. Rare tetratricopeptide repeat, ankyrin repeat and coiled-coil containing 2 (TANC2)-disrupting variants were disease causing in NDD patients. The post-synaptic scaffold protein TANC2 is essential for dendrite formation in synaptic plasticity and plays an unclarified but critical role in development. We here report a novel homozygous-viable Tanc2-disrupted function model in which mutant mice were hyperactive and had impaired sensorimotor gating consistent with NDD patient psychiatric endophenotypes. Yet, a multi-systemic analysis revealed the pleiotropic effects of Tanc2 outside the brain, such as growth failure and hepatocellular damage. This was associated with aberrant liver function including altered hepatocellular metabolism. Integrative analysis indicates that these disrupted Tanc2 systemic effects relate to interaction with Hippo developmental signalling pathway proteins and will increase the risk for comorbid somatic disease. This highlights how NDD gene pleiotropy can augment medical comorbidity susceptibility, underscoring the benefit of holistic NDD patient diagnosis and treatment for which large-scale preclinical functional genomics can provide complementary pleiotropic gene function information.


Subject(s)
Neurodevelopmental Disorders , Proteins , Animals , Brain/metabolism , Humans , Mice , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Neuronal Plasticity , Protein Domains , Proteins/metabolism
14.
EMBO Mol Med ; 13(12): e14397, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34750991

ABSTRACT

Mitochondrial disorders are clinically and genetically diverse, with isolated complex III (CIII) deficiency being relatively rare. Here, we describe two affected cousins, presenting with recurrent episodes of severe lactic acidosis, hyperammonaemia, hypoglycaemia and encephalopathy. Genetic investigations in both cases identified a homozygous deletion of exons 2 and 3 of UQCRH, which encodes a structural complex III (CIII) subunit. We generated a mouse model with the equivalent homozygous Uqcrh deletion (Uqcrh-/- ), which also presented with lactic acidosis and hyperammonaemia, but had a more severe, non-episodic phenotype, resulting in failure to thrive and early death. The biochemical phenotypes observed in patient and Uqcrh-/- mouse tissues were remarkably similar, displaying impaired CIII activity, decreased molecular weight of fully assembled holoenzyme and an increase of an unexpected large supercomplex (SXL ), comprising mostly of one complex I (CI) dimer and one CIII dimer. This phenotypic similarity along with lentiviral rescue experiments in patient fibroblasts verifies the pathogenicity of the shared genetic defect, demonstrating that the Uqcrh-/- mouse is a valuable model for future studies of human CIII deficiency.


Subject(s)
Mitochondrial Diseases , Animals , Electron Transport Complex III , Exons , Homozygote , Humans , Mice , Mitochondrial Diseases/genetics , Phenotype , Sequence Deletion
15.
Mamm Genome ; 32(5): 332-349, 2021 10.
Article in English | MEDLINE | ID: mdl-34043061

ABSTRACT

Pathogenic variants in the WDR45 (OMIM: 300,526) gene on chromosome Xp11 are the genetic cause of a rare neurological disorder characterized by increased iron deposition in the basal ganglia. As WDR45 encodes a beta-propeller scaffold protein with a putative role in autophagy, the disease has been named Beta-Propeller Protein-Associated Neurodegeneration (BPAN). BPAN represents one of the four most common forms of Neurodegeneration with Brain Iron Accumulation (NBIA). In the current study, we generated and characterized a whole-body Wdr45 knock-out (KO) mouse model. The model, developed using TALENs, presents a 20-bp deletion in exon 2 of Wdr45. Homozygous females and hemizygous males are viable, proving that systemic depletion of Wdr45 does not impair viability and male fertility in mice. The in-depth phenotypic characterization of the mouse model revealed neuropathology signs at four months of age, neurodegeneration progressing with ageing, hearing and visual impairment, specific haematological alterations, but no brain iron accumulation. Biochemically, Wdr45 KO mice presented with decreased complex I (CI) activity in the brain, suggesting that mitochondrial dysfunction accompanies Wdr45 deficiency. Overall, the systemic Wdr45 KO described here complements the two mouse models previously reported in the literature (PMIDs: 26,000,824, 31,204,559) and represents an additional robust model to investigate the pathophysiology of BPAN and to test therapeutic strategies for the disease.


Subject(s)
Carrier Proteins/genetics , Animals , Female , Male , Mice , Mice, Knockout , Phenotype
16.
Sci Rep ; 10(1): 18334, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33110090

ABSTRACT

Sex steroids, such as estrogens and androgens, are important regulators of the humoral immune response. Studies in female mice have demonstrated that alteration of circulating estrogen concentration regulates antibody-mediated immunity. As males have normally little endogenous estrogen, we hypothesized that in males high estrogens and low androgens affect the immune system and enhance the allergic inflammatory response. Here, we studied transgenic male mice expressing human aromatase (AROM+). These animals have a high circulating estrogen to androgen ratio (E/A), causing female traits such as gynecomastia. We found that AROM+ male mice had significantly higher plasma immunoglobulin levels, particularly IgE. Flow cytometry analyses of splenocytes revealed changes in mature/immature B cell ratio together with a transcriptional upregulation of the Igh locus. Furthermore, higher proliferation rate and increased IgE synthesis after IgE class-switching was found. Subsequently, we utilized an ovalbumin airway challenge model to test the allergic response in AROM+ male mice. In line with above observations, an increase in IgE levels was measured, albeit no impact on immune cell infiltration into the lungs was detected. Together, our findings suggest that high circulating E/A in males significantly alters B cell function without any significant enhancement in allergic inflammation.


Subject(s)
Androgens/physiology , B-Lymphocytes/physiology , Estrogens/physiology , Immunoglobulins/blood , Androgens/blood , Animals , Aromatase/metabolism , Estrogens/blood , Female , Flow Cytometry , Gene Expression , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Spleen/physiology
17.
Sci Adv ; 6(35): eaaz4551, 2020 08.
Article in English | MEDLINE | ID: mdl-32923617

ABSTRACT

Recently, covalent modifications of RNA, such as methylation, have emerged as key regulators of all aspects of RNA biology and have been implicated in numerous diseases, for instance, cancer. Here, we undertook a combination of in vitro and in vivo screens to test 78 potential methyltransferases for their roles in hepatocellular carcinoma (HCC) cell proliferation. We identified methyltransferase-like protein 6 (METTL6) as a crucial regulator of tumor cell growth. We show that METTL6 is a bona fide transfer RNA (tRNA) methyltransferase, catalyzing the formation of 3-methylcytidine at C32 of specific serine tRNA isoacceptors. Deletion of Mettl6 in mouse stem cells results in changes in ribosome occupancy and RNA levels, as well as impaired pluripotency. In mice, Mettl6 knockout results in reduced energy expenditure. We reveal a previously unknown pathway in the maintenance of translation efficiency with a role in maintaining stem cell self-renewal, as well as impacting tumor cell growth profoundly.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/genetics , Cell Proliferation , Liver Neoplasms/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , RNA , RNA, Transfer/genetics , RNA, Transfer/metabolism , tRNA Methyltransferases
18.
Neurosci Lett ; 735: 135206, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32593773

ABSTRACT

Inositol-1,4,5-trisphosphate 3-kinase-A (ITPKA) is the neuronal isoform of ITPKs and exhibits both actin bundling and InsP3kinase activity. In addition to neurons, ITPKA is ectopically expressed in tumor cells, where its oncogenic activity increases tumor cell malignancy. In order to analyze the physiological relevance of ITPKA, here we performed a broad phenotypic screening of itpka deficient mice. Our data show that among the neurobehavioral tests analyzed, itpka deficient mice reacted faster to a hotplate, prepulse inhibition was impaired and the accelerating rotarod test showed decreased latency of itpka deficient mice to fall. These data indicate that ITPKA is involved in the regulation of nociceptive pathways, sensorimotor gating and motor learning. Analysis of extracerebral functions in control and itpka deficient mice revealed significantly reduced glucose, lactate, and triglyceride plasma concentrations in itpka deficient mice. Based on this finding, expression of ITPKA was analyzed in extracerebral tissues and the highest level was found in the small intestine. However, functional studies on CaCo-2 control and ITPKA depleted cells showed that glucose, as well as triglyceride uptake, were not significantly different between the cell lines. Altogether, these data show that ITPKA exhibits distinct functions in the central nervous system and reveal an involvement of ITPKA in energy metabolism.


Subject(s)
Neurons/enzymology , Phosphotransferases (Alcohol Group Acceptor)/deficiency , Prepulse Inhibition/physiology , Animals , Caco-2 Cells , Female , Humans , Isoenzymes/deficiency , Isoenzymes/genetics , Male , Mice , Mice, Knockout , Phosphotransferases (Alcohol Group Acceptor)/genetics
19.
Genes Dev ; 34(9-10): 715-729, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32217665

ABSTRACT

Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing these modifications, their substrates and biological functions, remains vague. Amongst RNA modifications N6-methyladenosine (m6A) is widespread and found in messenger (mRNA), ribosomal (rRNA), and noncoding RNAs. Here, we undertook a systematic screen to uncover new RNA methyltransferases. We demonstrate that the methyltransferase-like 5 (METTL5) protein catalyzes m6A in 18S rRNA at position A1832 We report that absence of Mettl5 in mouse embryonic stem cells (mESCs) results in a decrease in global translation rate, spontaneous loss of pluripotency, and compromised differentiation potential. METTL5-deficient mice are born at non-Mendelian rates and develop morphological and behavioral abnormalities. Importantly, mice lacking METTL5 recapitulate symptoms of patients with DNA variants in METTL5, thereby providing a new mouse disease model. Overall, our biochemical, molecular, and in vivo characterization highlights the importance of m6A in rRNA in stemness, differentiation, development, and diseases.


Subject(s)
Cell Differentiation/genetics , Gene Expression Regulation, Developmental/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/enzymology , Mutation , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Protein Biosynthesis/genetics , RNA, Ribosomal, 18S/metabolism
20.
Mamm Genome ; 31(1-2): 30-48, 2020 02.
Article in English | MEDLINE | ID: mdl-32060626

ABSTRACT

The collaborative cross (CC) is a large panel of mouse-inbred lines derived from eight founder strains (NOD/ShiLtJ, NZO/HILtJ, A/J, C57BL/6J, 129S1/SvImJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ). Here, we performed a comprehensive and comparative phenotyping screening to identify phenotypic differences and similarities between the eight founder strains. In total, more than 300 parameters including allergy, behavior, cardiovascular, clinical blood chemistry, dysmorphology, bone and cartilage, energy metabolism, eye and vision, immunology, lung function, neurology, nociception, and pathology were analyzed; in most traits from sixteen females and sixteen males. We identified over 270 parameters that were significantly different between strains. This study highlights the value of the founder and CC strains for phenotype-genotype associations of many genetic traits that are highly relevant to human diseases. All data described here are publicly available from the mouse phenome database for analyses and downloads.


Subject(s)
Mice, Inbred Strains/genetics , Phenotype , Animals , Collaborative Cross Mice/genetics , Databases, Genetic , Female , Genetic Association Studies , Genotype , Male , Mice , Quantitative Trait Loci , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...