Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
2.
Genes (Basel) ; 14(2)2023 02 03.
Article in English | MEDLINE | ID: mdl-36833324

ABSTRACT

Recent advances in next generation sequencing (NGS) have greatly increased our understanding of non-coding tandem repeat (TR) DNA. Here we show how TR DNA can be useful for the study of hybrid zones (HZ), as it serves as a marker to identify introgression in areas where two biological entities come in contact. We used Illumina libraries to analyse two subspecies of the grasshopper Chorthippus parallelus, which currently form a HZ in the Pyrenees. We retrieved a total of 152 TR sequences, and used fluorescent in situ hybridization (FISH) to map 77 families in purebred individuals from both subspecies. Our analysis revealed 50 TR families that could serve as markers for analysis of this HZ, using FISH. Differential TR bands were unevenly distributed between chromosomes and subspecies. Some of these TR families yielded FISH bands in only one of the subspecies, suggesting the amplification of these TR families after the geographic separation of the subspecies in the Pleistocene. Our cytological analysis of two TR markers along a transect of the Pyrenean hybrid zone showed asymmetrical introgression of one subspecies into the other, consistent with previous findings using other markers. These results demonstrate the reliability of TR-band markers for hybrid zone studies.


Subject(s)
Grasshoppers , Animals , Grasshoppers/genetics , In Situ Hybridization, Fluorescence , Reproducibility of Results , DNA/genetics
3.
Chromosome Res ; 30(2-3): 217-228, 2022 09.
Article in English | MEDLINE | ID: mdl-35657532

ABSTRACT

Selfish genetic elements (SGE) get a transmission advantage (drive) thanks to their non-Mendelian inheritance. Here I identify eight steps during the reproductive cycle that can be subverted by SGEs to thrive in natural populations. Even though only three steps occur during meiosis, most cases of segregation distortion are considered "meiotic drive sensu lato." As this is a source of unnecessary contradictions, I suggest always using the term "transmission ratio distortion" (TRD). Chromosomal SGEs (e.g., B chromosomes) exhibit almost all types of TRD. In plants, the best-studied type of TRD for B chromosomes occurs post-meiotically during male gametophyte maturation. However, in animals, the two main types are pre-meiotic and meiotic TRDs, in all cases associated with gonotaxis (i.e., a preference of B chromosomes for germ cells). Frequently, TRD drivers in genic SGEs (e.g., t-alleles and segregation distorters in Drosophila) are paralogous copies of genes from the standard genome, whereas their targets can be other genes or satellite DNA (satDNA). As B chromosomes are often rich in satDNA and contain paralogous copies of A chromosome genes, perhaps their drive mechanisms are similar to those of genic SGEs. So far, the only association between a B chromosome gene and TRD is the gene haplodizer in Nasonia vitripennis. The discovery of B-genes controlling B-drive in other species does not appear to be far off, but experimental crosses will be needed to simultaneously test the TRD of a given B chromosome and the expression of its genes.


Subject(s)
Chromosomes , DNA, Satellite , Alleles , Animals , Chromosomes/genetics , Drosophila/genetics , Meiosis , Repetitive Sequences, Nucleic Acid
5.
BMC Biol ; 20(1): 36, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35130900

ABSTRACT

BACKGROUND: The full catalog of satellite DNA (satDNA) within a same genome constitutes the satellitome. The Library Hypothesis predicts that satDNA in relative species reflects that in their common ancestor, but the evolutionary mechanisms and pathways of satDNA evolution have never been analyzed for full satellitomes. We compare here the satellitomes of two Oedipodine grasshoppers (Locusta migratoria and Oedaleus decorus) which shared their most recent common ancestor about 22.8 Ma ago. RESULTS: We found that about one third of their satDNA families (near 60 in every species) showed sequence homology and were grouped into 12 orthologous superfamilies. The turnover rate of consensus sequences was extremely variable among the 20 orthologous family pairs analyzed in both species. The satDNAs shared by both species showed poor association with sequence signatures and motives frequently argued as functional, except for short inverted repeats allowing short dyad symmetries and non-B DNA conformations. Orthologous satDNAs frequently showed different FISH patterns at both intra- and interspecific levels. We defined indices of homogenization and degeneration and quantified the level of incomplete library sorting between species. CONCLUSIONS: Our analyses revealed that satDNA degenerates through point mutation and homogenizes through partial turnovers caused by massive tandem duplications (the so-called satDNA amplification). Remarkably, satDNA amplification increases homogenization, at intragenomic level, and diversification between species, thus constituting the basis for concerted evolution. We suggest a model of satDNA evolution by means of recursive cycles of amplification and degeneration, leading to mostly contingent evolutionary pathways where concerted evolution emerges promptly after lineages split.


Subject(s)
DNA, Satellite , Grasshoppers , Animals , DNA, Satellite/genetics , Evolution, Molecular , Gene Library , Grasshoppers/genetics , Humans , Phylogeny
6.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35058355

ABSTRACT

Songbirds have one special accessory chromosome, the so-called germline-restricted chromosome (GRC), which is only present in germline cells and absent from all somatic tissues. Earlier work on the zebra finch (Taeniopygia guttata castanotis) showed that the GRC is inherited only through the female line-like the mitochondria-and is eliminated from the sperm during spermatogenesis. Here, we show that the GRC has the potential to be paternally inherited. Confocal microscopy using GRC-specific fluorescent in situ hybridization probes indicated that a considerable fraction of sperm heads (1 to 19%) in zebra finch ejaculates still contained the GRC. In line with these cytogenetic data, sequencing of ejaculates revealed that individual males from two families differed strongly and consistently in the number of GRCs in their ejaculates. Examining a captive-bred male hybrid of the two zebra finch subspecies (T. g. guttata and T. g. castanotis) revealed that the mitochondria originated from a castanotis mother, whereas the GRC came from a guttata father. Moreover, analyzing GRC haplotypes across nine castanotis matrilines, estimated to have diverged for up to 250,000 y, showed surprisingly little variability among GRCs. This suggests that a single GRC haplotype has spread relatively recently across all examined matrilines. A few diagnostic GRC mutations that arose since this inferred spreading suggest that the GRC has continued to jump across matriline boundaries. Our findings raise the possibility that certain GRC haplotypes could selfishly spread through the population via occasional paternal transmission, thereby outcompeting other GRC haplotypes that were limited to strict maternal inheritance, even if this was partly detrimental to organismal fitness.


Subject(s)
Chromosomes , Germ Cells , Paternal Inheritance , Songbirds/genetics , Animals , Cytogenetic Analysis , DNA, Mitochondrial , Evolution, Molecular , Female , Haplotypes , Male , Phylogeny , Songbirds/classification , Spermatozoa
7.
Genome ; 65(2): 95-103, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34555288

ABSTRACT

Vandenboschia speciosa is an endangered tetraploid fern species with a large genome (10.5 Gb). Its geographical distribution is characterized by disjoined tertiary flora refuges, with relict populations that survived past climate crises. Here, we analyzed the transposable elements (TEs) and found that they comprise approximately 76% of the V. speciosa genome, thus being the most abundant type of DNA sequence in this gigantic genome. The V. speciosa genome is composed of 51% and 5.6% of Class I and Class II elements, respectively. LTR retrotransposons were the most abundant TEs in this species (at least 42% of the genome), followed by non-LTR retrotransposons, which constituted at least 8.7% of the genome of this species. We introduce an additional analysis to identify the nature of non-annotated elements (19% of the genome). A BLAST search of the non-annotated contigs against the V. speciosa TE database allowed for the identification of almost half of them, which were most likely diverged sequence variants of the annotated TEs. In general, the TE composition in V. speciosa resembles the TE composition in seed plants. In addition, repeat landscapes revealed three episodes of amplification for all TEs, most likely due to demographic changes associated with past climate crises.


Subject(s)
Ferns , DNA Transposable Elements/genetics , Evolution, Molecular , Ferns/genetics , Genome, Plant , Retroelements
8.
Heredity (Edinb) ; 127(5): 475-483, 2021 11.
Article in English | MEDLINE | ID: mdl-34482369

ABSTRACT

In addition to the normal set of standard (A) chromosomes, some eukaryote species harbor supernumerary (B) chromosomes. In most cases, B chromosomes show differential condensation with respect to A chromosomes and display dark C-bands of heterochromatin, and some of them are highly enriched in repetitive DNA. Here we perform a comprehensive NGS (next-generation sequencing) analysis of the repeatome in the grasshopper Abracris flavolineata aimed at uncovering the molecular composition and origin of its B chromosome. Our results have revealed that this B chromosome shows a DNA repeat content highly similar to the DNA repeat content observed for euchromatic (non-C-banded) regions of A chromosomes. Moreover, this B chromosome shows little enrichment for high-copy repeats, with only a few elements showing overabundance in B-carrying individuals compared to the 0B individuals. Consequently, the few satellite DNAs (satDNAs) mapping on the B chromosome were mostly restricted to its centromeric and telomeric regions, and they displayed much smaller bands than those observed on the A chromosomes. Our data support the intraspecific origin of the B chromosome from the longest autosome by misdivision, isochromosome formation, and additional restructuring, with accumulation of specific repeats in one or both B chromosome arms, yielding a submetacentric B. Finally, the absence of B-specific satDNAs, which are frequent in other species, along with its euchromatic nature, suggest that this B chromosome arose recently and might still be starting a heterochromatinization process. On this basis, it could be a good model to investigate the initial steps of B chromosome evolution.


Subject(s)
Grasshoppers , Animals , Chromosomes, Insect/genetics , DNA , DNA, Satellite/genetics , Grasshoppers/genetics , Heterochromatin/genetics , Humans
9.
Prog Mol Subcell Biol ; 60: 85-102, 2021.
Article in English | MEDLINE | ID: mdl-34386873

ABSTRACT

Next-Generation Sequencing (NGS) has revealed that B chromosomes in several species are enriched in repetitive DNA, mostly satellite DNA (satDNA). This raises the question of whether satDNA is important to B chromosomes for functional reasons or else its abundance on Bs is simply a consequence of properties of B chromosomes such as their dispensability and late replication. Here we review current knowledge in this respect and contextualize it within the frame of practical difficulties to perform this kind of research, the most important being the absence of good full genome sequencing for B-carrying species, which is an essential requisite to ascertain the intragenomic origin of B chromosomes. Our review analysis on 16 species revealed that 38% of them showed B-specific satDNAs whereas only one of them (6%) carried an inter-specifically originated B chromosome. This shows that B-specific satDNA families can eventually evolve in intraspecifically arisen B chromosomes. Finally, the possibility of satDNA accumulation on B chromosomes for functional reasons is exemplified by B chromosomes in rye, as they contain B-specific satDNAs which are transcribed and occupy chromosome locations where they might facilitate the kind of drive shown by this B chromosome during pollen grain mitosis.


Subject(s)
Chromosomes , DNA, Satellite , Chromosome Mapping , Chromosomes/genetics , DNA , DNA, Satellite/genetics , Humans , In Situ Hybridization, Fluorescence
10.
BMC Biol ; 19(1): 52, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33740955

ABSTRACT

BACKGROUND: Eukaryote genomes frequently harbor supernumerary B chromosomes in addition to the "standard" A chromosome set. B chromosomes are thought to arise as byproducts of genome rearrangements and have mostly been considered intraspecific oddities. However, their evolutionary transcendence beyond species level has remained untested. RESULTS: Here we reveal that the large metacentric B chromosomes reported in several fish species of the genus Astyanax arose in a common ancestor at least 4 million years ago. We generated transcriptomes of A. scabripinnis and A. paranae 0B and 1B individuals and used these assemblies as a reference for mapping all gDNA and RNA libraries to quantify coverage differences between B-lacking and B-carrying genomes. We show that the B chromosomes of A. scabripinnis and A. paranae share 19 protein-coding genes, of which 14 and 11 were also present in the B chromosomes of A. bockmanni and A. fasciatus, respectively. Our search for B-specific single-nucleotide polymorphisms (SNPs) identified the presence of B-derived transcripts in B-carrying ovaries, 80% of which belonged to nobox, a gene involved in oogenesis regulation. Importantly, the B chromosome nobox paralog is expressed > 30× more than the A chromosome paralog. This indicates that the normal regulation of this gene is altered in B-carrying females, which could potentially facilitate B inheritance at higher rates than Mendelian law prediction. CONCLUSIONS: Taken together, our results demonstrate the long-term survival of B chromosomes despite their lack of regular pairing and segregation during meiosis and that they can endure episodes of population divergence leading to species formation.


Subject(s)
Characidae/genetics , Chromosomes/genetics , Genome , Polymorphism, Single Nucleotide , Animals , Chromosome Mapping , Female , Male , Species Specificity
11.
Genome Biol Evol ; 12(3): 88-102, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32211863

ABSTRACT

Satellite DNA (satDNA) is an abundant class of tandemly repeated noncoding sequences, showing high rate of change in sequence, abundance, and physical location. However, the mechanisms promoting these changes are still controversial. The library model was put forward to explain the conservation of some satDNAs for long periods, predicting that related species share a common collection of satDNAs, which mostly experience quantitative changes. Here, we tested the library model by analyzing three satDNAs in ten species of Schistocerca grasshoppers. This group represents a valuable material because it diversified during the last 7.9 Myr across the American continent from the African desert locust (Schistocerca gregaria), and this thus illuminates the direction of evolutionary changes. By combining bioinformatic and cytogenetic, we tested whether these three satDNA families found in S. gregaria are also present in nine American species, and whether differential gains and/or losses have occurred in the lineages. We found that the three satDNAs are present in all species but display remarkable interspecies differences in their abundance and sequences while being highly consistent with genus phylogeny. The number of chromosomal loci where satDNA is present was also consistent with phylogeny for two satDNA families but not for the other. Our results suggest eminently chance events for satDNA evolution. Several evolutionary trends clearly imply either massive amplifications or contractions, thus closely fitting the library model prediction that changes are mostly quantitative. Finally, we found that satDNA amplifications or contractions may influence the evolution of monomer consensus sequences and by chance playing a major role in driftlike dynamics.


Subject(s)
DNA, Satellite/genetics , Evolution, Molecular , Grasshoppers/genetics , Animals , Chromosomes, Insect , DNA, Satellite/chemistry , Female , Heterochromatin , Karyotype , Male , Sequence Analysis, DNA
13.
Heredity (Edinb) ; 124(1): 197-206, 2020 01.
Article in English | MEDLINE | ID: mdl-31285567

ABSTRACT

The near-neutral model of B chromosome evolution predicts that population invasion is quite fast. To test this prediction, in 1994, we introduced males of the grasshopper Eyprepocnemis plorans from a B-carrying population into a B-lacking population and monitored the evolution of B-chromosome frequency up to 2013. We observed fluctuating very low B frequency across years but, remarkably, the B chromosome introduced (the B2 variant) was found up to 1996 only, whereas the B1 variant was present from 1996 onwards, presumably introduced by fishermen using E. plorans males as bait. Effective introgression of genetic material from the donor population was evidenced by the presence of a satellite DNA on autosome 9 (up to 1999) and the presence of one individual in 2006 showing an ISSR marker profile being highly similar to that found in the donor population. This indicated that the males introduced by us effectively mated with resident females, but donor genes rapidly decreased in frequency after this non-recurrent migration event. Taken together, our results indicated: (i) that the non-recurrent migration event had a slight, transient genetic effect on the recipient population, which was diluted in only a few generations; and (ii) that even with recurrent migration (forced by fishermen) the B chromosome failed to increase in frequency. Bearing in mind that B chromosomes in this species drive through females only, we hypothesize that B chromosomes most likely failed invasion in both migration events because the migrating sex shows no B-drive.


Subject(s)
Chromosomes, Insect/genetics , Evolution, Molecular , Genetics, Population , Grasshoppers/genetics , Animals , DNA, Satellite , Female , Male , Population Density , Spain
14.
Mol Genet Genomics ; 295(1): 195-207, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31624915

ABSTRACT

The origin of supernumerary (B) chromosomes is clearly conditioned by their ancestry from the standard (A) chromosomes. Sequence similarity between A and B chromosomes is thus crucial to determine B chromosome origin. For this purpose, we compare here the DNA sequences from A and B chromosomes in the characid fish Characidium gomesi using two main approaches. First, we found 59 satellite DNA (satDNA) families constituting the satellitome of this species and performed FISH analysis for 18 of them. This showed the presence of six satDNAs on the B chromosome: one shared with sex chromosomes and autosomes, two shared with sex chromosomes, one shared with autosomes and two being B-specific. This indicated that B chromosomes most likely arose from the sex chromosomes. Our second approach consisted of the analysis of five repetitive DNA families: 18S and 5S ribosomal DNA (rDNA), the H3 histone gene, U2 snDNA and the most abundant satDNA (CgoSat01-184) on DNA obtained from microdissected B chromosomes and from B-lacking genomes. PCR and sequence analysis of these repetitive sequences was successful for three of them (5S rDNA, H3 histone gene and CgoSat01-184), and sequence comparison revealed that DNA sequences obtained from the B chromosomes displayed higher identity with C. gomesi genomic DNA than with those obtained from other Characidium species. Taken together, our results support the intraspecific origin of B chromosomes in C. gomesi and point to sex chromosomes as B chromosome ancestors, which raises interesting prospects for future joint research on the genetic content of sex and B chromosomes in this species.


Subject(s)
Characidae/genetics , Characiformes/genetics , DNA, Satellite/genetics , Sex Chromosomes/genetics , Animals , Chromosome Mapping/methods , DNA, Ribosomal/genetics , Evolution, Molecular , Histones/genetics , Karyotype , Repetitive Sequences, Nucleic Acid/genetics
15.
Nat Commun ; 10(1): 5468, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31784533

ABSTRACT

In some eukaryotes, germline and somatic genomes differ dramatically in their composition. Here we characterise a major germline-soma dissimilarity caused by a germline-restricted chromosome (GRC) in songbirds. We show that the zebra finch GRC contains >115 genes paralogous to single-copy genes on 18 autosomes and the Z chromosome, and is enriched in genes involved in female gonad development. Many genes are likely functional, evidenced by expression in testes and ovaries at the RNA and protein level. Using comparative genomics, we show that genes have been added to the GRC over millions of years of evolution, with embryonic development genes bicc1 and trim71 dating to the ancestor of songbirds and dozens of other genes added very recently. The somatic elimination of this evolutionarily dynamic chromosome in songbirds implies a unique mechanism to minimise genetic conflict between germline and soma, relevant to antagonistic pleiotropy, an evolutionary process underlying ageing and sexual traits.


Subject(s)
Chromosomes/genetics , DNA/metabolism , Finches/genetics , Genes, Developmental/genetics , Genome/genetics , Germ Cells/metabolism , Animals , Evolution, Molecular , Female , Genomics , Gonads/embryology , Gonads/metabolism , Liver/innervation , Liver/metabolism , Male , Muscle, Skeletal/metabolism , Sex Chromosomes/genetics , Songbirds/genetics , Testis/metabolism
16.
Chromosoma ; 128(1): 53-67, 2019 03.
Article in English | MEDLINE | ID: mdl-30617552

ABSTRACT

Parasitism evokes adaptive physiological changes in the host, many of which take place through gene expression changes. This response can be more or less local, depending on the organ or tissue affected by the parasite, or else systemic when the parasite affects the entire host body. The most extreme of the latter cases is intragenomic parasitism, where the parasite is present in all host nuclei as any other genomic element. Here, we show the molecular crosstalk between a parasitic chromosome (also named B chromosome) and the host genome, manifested through gene expression changes. The transcriptome analysis of 0B and 1B females of the grasshopper Eyprepocnemis plorans, validated by a microarray experiment performed on four B-lacking and five B-carrying females, revealed changes in gene expression for 188 unigenes being consistent in both experiments. Once discarded B-derived transcripts, there were 46 differentially expressed genes (30 up- and 16 downregulated) related with the adaptation of the host genome to the presence of the parasitic chromosome. Interestingly, the functions of these genes could explain some of the most important effects of B chromosomes, such as nucleotypic effects derived from the additional DNA they represent, chemical defense and detoxification, protein modification and response to stress, ovary function, and regulation of gene expression. Collectively, these changes uncover an intimate host-parasite interaction between A and B chromosomes during crucial steps of gene expression and protein function.


Subject(s)
Chromosomes, Insect/chemistry , Genome, Insect , Grasshoppers/genetics , Host-Parasite Interactions/genetics , Phenotype , Transcriptome , Animals , Female , Gene Expression Regulation , Gene Ontology , Genotype , Grasshoppers/parasitology , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Oligonucleotide Array Sequence Analysis , Ovary/metabolism , Ovary/parasitology
17.
Evolution ; 72(6): 1216-1224, 2018 06.
Article in English | MEDLINE | ID: mdl-29741266

ABSTRACT

B chromosomes have been reported in about 15% of eukaryotes, but long-term dynamics of B chromosomes in a single natural population has rarely been analyzed. Prospero autumnale plants collected in 1981 and 1983 at Cuesta de La Palma population had shown the presence of B chromosomes. We analyze here seven additional samples collected between 1987 and 2015, and show that B frequency increased significantly during the 1980s and showed minor fluctuations between 2005 and 2015. A mother-offspring analysis of B chromosome transmission, at population level, showed significant drive on the male side (kB  = 0.65) and significant drag on the female side (kB  = 0.33), with average B transmission rate being very close to the Mendelian rate (0.5). No significant effects of B chromosomes were observed on a number of vigor and fertility-related traits. Within a parasite/host framework, these results suggest that B chromosomes' drive on the male side is the main pathway for B chromosome invasion, whereas B chromosome drag on the female side might be the main manifestation of host genome resistance in this species. Prospero autumnale thus illuminates a novel evolutionary pathway for B chromosome neutralization by means of a decrease in B transmission through the nondriving sex.


Subject(s)
Asparagaceae/genetics , Chromosomes, Plant/genetics , Evolution, Molecular , Fertility , Karyotype , Pollen
18.
Chromosoma ; 127(3): 323-340, 2018 09.
Article in English | MEDLINE | ID: mdl-29549528

ABSTRACT

Satellite DNA (satDNA) constitutes an important fraction of repetitive DNA in eukaryotic genomes, but it is barely known in most species. The high-throughput analysis of satDNA in the grasshopper Pyrgomorpha conica revealed 87 satDNA variants grouped into 76 different families, representing 9.4% of the genome. Fluorescent in situ hybridization (FISH) analysis of the 38 most abundant satDNA families revealed four different patterns of chromosome distribution. Homology search between the 76 satDNA families showed the existence of 15 superfamilies, each including two or more families, with the most abundant superfamily representing more than 80% of all satDNA found in this species. This also revealed the presence of two types of higher-order repeats (HORs), one showing internal homologous subrepeats, as conventional HORs, and an additional type showing non-homologous internal subrepeats, the latter arising by the combination of a given satDNA family with a non-annotated sequence, or with telomeric DNA. Interestingly, the heterologous subrepeats included in these HORs showed higher divergence within the HOR than outside it, suggesting that heterologous HORs show poor homogenization, in high contrast with conventional (homologous) HORs. Finally, heterologous HORs can show high differences in divergence between their constituent subrepeats, suggesting the possibility of regional homogenization.


Subject(s)
DNA, Satellite , Grasshoppers/genetics , Tandem Repeat Sequences , Animals , Base Composition , Chromosome Mapping , Computational Biology/methods , Genome, Insect , Genomics/methods , High-Throughput Nucleotide Sequencing , In Situ Hybridization, Fluorescence , Nucleic Acid Amplification Techniques , Telomere/genetics
19.
Chromosoma ; 127(1): 45-57, 2018 03.
Article in English | MEDLINE | ID: mdl-28868580

ABSTRACT

Repetitive DNA is a major component in most eukaryotic genomes but is ignored in most genome sequencing projects. Here, we report the quantitative composition in repetitive DNA for a supernumerary (B) chromosome, in the migratory locust (Locusta migratoria), by Illumina sequencing of genomic DNA from B-carrying and B-lacking individuals and DNA obtained from a microdissected B chromosome, as well as the physical mapping of some elements. B chromosome DNA of 94.9% was repetitive, in high contrast with the 64.1% of standard (A) chromosomes. B chromosomes are enriched in satellite DNA (satDNA) (65.2% of B-DNA), with a single satellite (LmiSat02-176) comprising 55% of the B. Six satDNAs were visualized by FISH on the B chromosome, and the only A chromosome carrying all these satellites was autosome 9, pointing to this chromosome, along with autosome 8 (which shares histone genes with the B) as putative ancestors of the B chromosome. We found several transposable elements (TEs) showing nucleotidic variation specific to B-carrying individuals, which was also present in B-carrying transcriptomes. Remarkably, an interstitial region of the B chromosome included a 17 kb chimera composed of 29 different TEs, suggesting reiterative TE insertion in this B chromosome region.


Subject(s)
Chromosomes, Insect , Locusta migratoria/genetics , Repetitive Sequences, Nucleic Acid , Animals , DNA Transposable Elements , DNA, Satellite , Female , Genome, Insect , Genomics/methods , High-Throughput Nucleotide Sequencing , Male
20.
Sci Rep ; 7(1): 17650, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29247237

ABSTRACT

Parasitic B chromosomes invade and persist in natural populations through several mechanisms for transmission advantage (drive). They may contain gene-derived sequences which, in some cases, are actively transcribed. A further interesting question is whether B-derived transcripts become functional products. In the grasshopper Eyprepocnemis plorans, one of the gene-derived sequences located on the B chromosome shows homology with the gene coding for the CAP-G subunit of condensin I. We show here, by means of fluorescent in situ hybridization coupled with tyramide signal amplification (FISH-TSA), that this gene is located in the distal region of the B24 chromosome variant. The DNA sequence located in the B chromosome is a pseudogenic version of the CAP-G gene (B-CAP-G). In two Spanish populations, we found active transcription of B-CAP-G, but it did not influence the expression of CAP-D2 and CAP-D3 genes coding for corresponding condensin I and II subunits, respectively. Our results indicate that the transcriptional regulation of the B-CAP-G pseudogene is uncoupled from the standard regulation of the genes that constitute the condensin complex, and suggest that some of the B chromosome known effects may be related with its gene content and transcriptional activity, thus opening new exciting avenues for research.


Subject(s)
Adenosine Triphosphatases/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomes, Insect/genetics , DNA-Binding Proteins/genetics , Grasshoppers/genetics , Insect Proteins/genetics , Multiprotein Complexes/genetics , Pseudogenes/genetics , Animals , Computational Biology , Female , Gene Expression Regulation , In Situ Hybridization, Fluorescence , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...