Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 11(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37896941

ABSTRACT

Dengue fever is the most prevalent arboviral disease worldwide. Dengue virus (DENV), the etiological agent, is known to have been circulating in Senegal since 1970, though for a long time, virus epidemiology was restricted to the circulation of sylvatic DENV-2 in south-eastern Senegal (the Kedougou region). In 2009 a major shift was noticed with the first urban epidemic, which occurred in the Dakar region and was caused by DENV-3. Following the notification by Senegal, many other West African countries reported DENV-3 epidemics. Despite these notifications, there are scarce studies and data about the genetic diversity and molecular evolution of DENV-3 in West Africa. Using nanopore sequencing, phylogenetic, and phylogeographic approaches on historic strains and 36 newly sequenced strains, we studied the molecular evolution of DENV-3 in Senegal between 2009 and 2022. We then assessed the impact of the observed genetic diversity on the efficacy of preventive countermeasures and vaccination by mapping amino acid changes against vaccine strains. The results showed that the DENV-3 strains circulating in Senegal belong to genotype III, similarly to strains from other West African countries, while belonging to different clades. Phylogeographic analysis based on nearly complete genomes revealed three independent introduction events from Asia and Burkina Faso. Comparison of the amino acids in the CprM-E regions of genomes from the Senegalese strains against the vaccine strains revealed the presence of 22 substitutions (7 within the PrM and 15 within the E gene) when compared to CYD-3, while 23 changes were observed when compared to TV003 (6 within the PrM and 17 within the E gene). Within the E gene, most of the changes compared to the vaccine strains were located in the ED-III domain, which is known to be crucial in neutralizing antibody production. Altogether, these data give up-to-date insight into DENV-3 genomic evolution in Senegal which needs to be taken into account in future vaccination strategies. Additionally, they highlight the importance of the genomic epidemiology of emerging pathogens in Africa and call for the implementation of a pan-African network for genomic surveillance of dengue virus.

2.
Viruses ; 15(4)2023 03 31.
Article in English | MEDLINE | ID: mdl-37112887

ABSTRACT

In Senegal, the burden of dengue is increasing and expanding. As case management and traditional diagnostic techniques can be difficult to implement, rapid diagnostic tests (RDTs) deployed at point of care are ideal for investigating active outbreaks. The aim of this study was to evaluate the diagnostic performance of the Dengue NS1 and Dengue IgM/IgG RDTs on the serum/plasma samples in a laboratory setting and in the field. During laboratory evaluation, performance of the NS1 RDT was assessed using NS1 ELISA as the gold standard. Sensitivity and specificity were 88% [75-95%] and 100% [97-100%], respectively. Performance of the IgM/IG RDT was assessed using the IgM Antibody Capture (MAC) ELISA, indirect IgG, and PRNT as gold standards. The IgM and IgG test lines respectively displayed sensitivities of 94% [83-99%] and 70% [59-79%] and specificities of 91% [84-95%] and 91% [79-98%]. In the field, the Dengue NS1 RDT sensitivity and specificity was 82% [60-95%] and 75% [53-90%], respectively. The IgM and IgG test lines displayed sensitivities of 86% [42-100%] and 78% [64-88%], specificities of 85% [76-92%] and 55% [36-73%], respectively. These results demonstrate that RDTs are ideal for use in a context of high prevalence or outbreak setting and can be implemented in the absence of a confirmatory test for acute and convalescent patients.


Subject(s)
Dengue Virus , Dengue , Humans , Dengue/diagnosis , Dengue/epidemiology , Rapid Diagnostic Tests , Senegal/epidemiology , Sensitivity and Specificity , Immunoglobulin M , Enzyme-Linked Immunosorbent Assay/methods , Immunoglobulin G , Antibodies, Viral , Viral Nonstructural Proteins
3.
PLoS One ; 12(8): e0182189, 2017.
Article in English | MEDLINE | ID: mdl-28771615

ABSTRACT

BACKGROUND: In the progress towards malaria elimination, the accurate diagnosis of low-density asymptomatic infections is critical. Low-density asymptomatic submicroscopic malaria infections may act as silent reservoirs that maintain low-level residual malaria transmission in the community. Light microscopy, the gold standard in malaria diagnosis lacks the sensitivity to detect low-level parasitaemia. In this study, the presence and prevalence of submicroscopic Plasmodium carriage were investigated to estimate the parasites reservoir among asymptomatic individuals living in low transmission areas in Dielmo and Ndiop, Senegal during the dry season. METHODS: A total of 2,037 blood samples were collected during cross-sectional surveys prior the malaria transmission season in July 2013 (N = 612), June 2014 (N = 723) and June 2015 (N = 702) from asymptomatic individuals living in Dielmo and Ndiop, Senegal. Samples were used to determine the prevalence of submicroscopic Plasmodium carriage by real time PCR (qPCR) in comparison to microscopy considered as gold standard. RESULTS: The prevalence of submicroscopic Plasmodium carriage was 3.75% (23/612), 12.44% (90/723) and 6.41% (45/702) in 2013, 2014 and 2015, respectively. No Plasmodium carriage was detected by microscopy in 2013 while microscopy-based prevalence of Plasmodium carriage accounted for only 0.27% (2/723) and 0.14% (1/702) in 2014 and 2015, respectively. Plasmodium falciparum accounted for the majority of submicroscopic infections and represented 86.95% (20/23), 81.11% (73/90) and 95.55 (43/45) of infections in 2013, 2014 and 2015 respectively. CONCLUSION: Low-density submicroscopic asymptomatic Plasmodium carriage is common in the study areas during the dry season indicating that traditional measures are insufficient to assess the scale of parasite reservoir when transmission reaches very low level. Control and elimination strategies may wish to consider using molecular methods to identify parasites carriers to guide Mass screening and Treatment strategies.


Subject(s)
Malaria/diagnosis , Malaria/prevention & control , Malaria/parasitology , Plasmodium/isolation & purification , Seasons , Adolescent , Adult , Aged , Aged, 80 and over , Carrier State/diagnosis , Carrier State/epidemiology , Carrier State/parasitology , Child , Child, Preschool , Cross-Sectional Studies , DNA, Protozoan/isolation & purification , DNA, Protozoan/metabolism , Erythrocytes/parasitology , Female , Humans , Infant , Malaria/epidemiology , Male , Middle Aged , Plasmodium/genetics , Senegal/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...