Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 442(7106): 1014-7, 2006 Aug 31.
Article in English | MEDLINE | ID: mdl-16943832

ABSTRACT

Over the past decade, long-duration gamma-ray bursts (GRBs)--including the subclass of X-ray flashes (XRFs)--have been revealed to be a rare variety of type Ibc supernova. Although all these events result from the death of massive stars, the electromagnetic luminosities of GRBs and XRFs exceed those of ordinary type Ibc supernovae by many orders of magnitude. The essential physical process that causes a dying star to produce a GRB or XRF, and not just a supernova, is still unknown. Here we report radio and X-ray observations of XRF 060218 (associated with supernova SN 2006aj), the second-nearest GRB identified until now. We show that this event is a hundred times less energetic but ten times more common than cosmological GRBs. Moreover, it is distinguished from ordinary type Ibc supernovae by the presence of 10(48) erg coupled to mildly relativistic ejecta, along with a central engine (an accretion-fed, rapidly rotating compact source) that produces X-rays for weeks after the explosion. This suggests that the production of relativistic ejecta is the key physical distinction between GRBs or XRFs and ordinary supernovae, while the nature of the central engine (black hole or magnetar) may distinguish typical bursts from low-luminosity, spherical events like XRF 060218.

2.
Nature ; 438(7070): 988-90, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16355217

ABSTRACT

Despite a rich phenomenology, gamma-ray bursts (GRBs) are divided into two classes based on their duration and spectral hardness--the long-soft and the short-hard bursts. The discovery of afterglow emission from long GRBs was a watershed event, pinpointing their origin to star-forming galaxies, and hence the death of massive stars, and indicating an energy release of about 10(51) erg. While theoretical arguments suggest that short GRBs are produced in the coalescence of binary compact objects (neutron stars or black holes), the progenitors, energetics and environments of these events remain elusive despite recent localizations. Here we report the discovery of the first radio afterglow from the short burst GRB 050724, which unambiguously associates it with an elliptical galaxy at a redshift z = 0.257. We show that the burst is powered by the same relativistic fireball mechanism as long GRBs, with the ejecta possibly collimated in jets, but that the total energy release is 10-1,000 times smaller. More importantly, the nature of the host galaxy demonstrates that short GRBs arise from an old (> 1 Gyr) stellar population, strengthening earlier suggestions and providing support for coalescing compact object binaries as the progenitors.

3.
Nature ; 437(7060): 845-50, 2005 Oct 06.
Article in English | MEDLINE | ID: mdl-16208362

ABSTRACT

The final chapter in the long-standing mystery of the gamma-ray bursts (GRBs) centres on the origin of the short-hard class of bursts, which are suspected on theoretical grounds to result from the coalescence of neutron-star or black-hole binary systems. Numerous searches for the afterglows of short-hard bursts have been made, galvanized by the revolution in our understanding of long-duration GRBs that followed the discovery in 1997 of their broadband (X-ray, optical and radio) afterglow emission. Here we present the discovery of the X-ray afterglow of a short-hard burst, GRB 050709, whose accurate position allows us to associate it unambiguously with a star-forming galaxy at redshift z = 0.160, and whose optical lightcurve definitively excludes a supernova association. Together with results from three other recent short-hard bursts, this suggests that short-hard bursts release much less energy than the long-duration GRBs. Models requiring young stellar populations, such as magnetars and collapsars, are ruled out, while coalescing degenerate binaries remain the most promising progenitor candidates.

4.
Nature ; 434(7037): 1112-5, 2005 Apr 28.
Article in English | MEDLINE | ID: mdl-15858569

ABSTRACT

It was established over a decade ago that the remarkable high-energy transients known as soft gamma-ray repeaters (SGRs) are located in our Galaxy and originate from neutron stars with intense (< or = 10(15)G) magnetic fields-so-called 'magnetars'. On 27 December 2004, a giant flare with a fluence exceeding 0.3 erg cm(-2) was detected from SGR 1806-20. Here we report the detection of a fading radio counterpart to this event. We began a monitoring programme from 0.2 to 250 GHz and obtained a high-resolution 21-cm radio spectrum that traces the intervening interstellar neutral hydrogen clouds. Analysis of the spectrum yields the first direct distance measurement of SGR 1806-20: the source is located at a distance greater than 6.4 kpc and we argue that it is nearer than 9.8 kpc. If correct, our distance estimate lowers the total energy of the explosion and relaxes the demands on theoretical models. The energetics and the rapid decay of the radio source are not compatible with the afterglow model that is usually invoked for gamma-ray bursts. Instead, we suggest that the rapidly decaying radio emission arises from the debris ejected during the explosion.

SELECTION OF CITATIONS
SEARCH DETAIL
...