Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
1.
Nutrients ; 16(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612989

ABSTRACT

Insulin resistance (IR)-related miRNAs have been associated with the development and progression of Alzheimer's disease (AD). The dietary modulation of these miRNAs could become a potential strategy to manage AD. The aim of this study was to evaluate the effect of a high-fat diet (HFD), which aggravates AD-related pathogenic processes, on serum, cortex and hippocampus IR-related miRNA expression. C57BL/6J WT and APPSwe/PS1dE9 mice were fed either an HFD or a conventional diet till 6 months of age. The mice fed with the HFD showed a significant increase in body weight and worsening glucose and insulin metabolism. miR-19a-3p was found to be up-regulated in the cortex, hippocampus and serum of APP/PS1 mice and in the serum and hippocampus of WT mice fed with the HFD. miR-34a-5p and miR-146a-5p were up-regulated in the serum of both groups of mice after consuming the HFD. Serum miR-29c-3p was overexpressed after consuming the HFD, along with hippocampal miR-338-3p and miR-125b-5p, only in WT mice. The HFD modulated the expression of peripheral and brain miRNAs related to glucose and insulin metabolism, suggesting the potential role of these miRNAs not only as therapeutic targets of AD but also as peripheral biomarkers for monitoring AD.


Subject(s)
Alzheimer Disease , Insulin Resistance , MicroRNAs , Animals , Mice , Insulin , Mice, Inbred C57BL , Diet, High-Fat/adverse effects , Alzheimer Disease/genetics , Brain , Glucose , MicroRNAs/genetics
2.
Acta Pharmacol Sin ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684799

ABSTRACT

Epilepsy is a chronic and debilitating neurological disorder, known for the occurrence of spontaneous and recurrent seizures. Despite the availability of antiseizure drugs, 30% of people with epilepsy experience uncontrolled seizures and drug resistance, evidencing that new therapeutic options are required. The process of epileptogenesis involves the development and expansion of tissue capable of generating spontaneous recurrent seizures, during which numerous events take place, namely blood-brain barrier (BBB) dysfunction, and neuroinflammation. The consequent cerebrovascular dysfunction results in a lower seizure threshold, seizure recurrence, and chronic epilepsy. This suggests that improving cerebrovascular health may interrupt the pathological cycle responsible for disease development and progression. Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors, encountered in brain endothelial cells, glial cells, and neurons. KLFs are known to regulate vascular function and changes in their expression are associated with neuroinflammation and human diseases, including epilepsy. Hence, KLFs have demonstrated various roles in cerebrovascular dysfunction and epileptogenesis. This review critically discusses the purpose of KLFs in epileptogenic mechanisms and BBB dysfunction, as well as the potential of their pharmacological modulation as therapeutic approach for epilepsy treatment.

3.
Cell Biosci ; 14(1): 8, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38229129

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) diagnosis relies on clinical symptoms complemented with biological biomarkers, the Amyloid Tau Neurodegeneration (ATN) framework. Small non-coding RNA (sncRNA) in the blood have emerged as potential predictors of AD. We identified sncRNA signatures specific to ATN and AD, and evaluated both their contribution to improving AD conversion prediction beyond ATN alone. METHODS: This nested case-control study was conducted within the ACE cohort and included MCI patients matched by sex. Patients free of type 2 diabetes underwent cerebrospinal fluid (CSF) and plasma collection and were followed-up for a median of 2.45-years. Plasma sncRNAs were profiled using small RNA-sequencing. Conditional logistic and Cox regression analyses with elastic net penalties were performed to identify sncRNA signatures for A+(T|N)+ and AD. Weighted scores were computed using cross-validation, and the association of these scores with AD risk was assessed using multivariable Cox regression models. Gene ontology (GO) and Kyoto encyclopaedia of genes and genomes (KEGG) enrichment analysis of the identified signatures were performed. RESULTS: The study sample consisted of 192 patients, including 96 A+(T|N)+ and 96 A-T-N- patients. We constructed a classification model based on a 6-miRNAs signature for ATN. The model could classify MCI patients into A-T-N- and A+(T|N)+ groups with an area under the curve of 0.7335 (95% CI, 0.7327 to 0.7342). However, the addition of the model to conventional risk factors did not improve the prediction of AD beyond the conventional model plus ATN status (C-statistic: 0.805 [95% CI, 0.758 to 0.852] compared to 0.829 [95% CI, 0.786, 0.872]). The AD-related 15-sncRNAs signature exhibited better predictive performance than the conventional model plus ATN status (C-statistic: 0.849 [95% CI, 0.808 to 0.890]). When ATN was included in this model, the prediction further improved to 0.875 (95% CI, 0.840 to 0.910). The miRNA-target interaction network and functional analysis, including GO and KEGG pathway enrichment analysis, suggested that the miRNAs in both signatures are involved in neuronal pathways associated with AD. CONCLUSIONS: The AD-related sncRNA signature holds promise in predicting AD conversion, providing insights into early AD development and potential targets for prevention.

4.
Int Immunopharmacol ; 128: 111471, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38199198

ABSTRACT

BACKGROUND: New strategies are urgently needed to manage and delay the development of Alzheimer's disease (AD). Neuroinflammation is a significant contributor to cognitive decline in neurodegenerative diseases, including AD. Angiotensin receptor blockers (ARBs) and angiotensin converting enzyme inhibitors (ACEIs) protect hypertensive patients against AD, but the cellular and molecular mechanisms underlying these effects remain unknown. In light of this, the protective effects of three ARBs and three ACEIs against neuroinflammation and cognitive decline were investigated through comprehensive pharmacologicalin vitro/in vivoscreening. METHODS: BV-2 microglia cells were exposed tolipopolysaccharide (LPS) and treated with ARBs and ACEIs to provide initial insights into the anti-inflammatory properties of the drugs. Subsequently, irbesartan was selected, and its efficacy was evaluated inC57/BL6 male miceintranasally administered with irbesartan and injected with LPS. Long-term memory and depressive-like behavior were evaluated; dendritic spines were measured as well as neuroinflammation, neurodegeneration and cognitive decline biomarkers. RESULTS: Irbesartan mitigated memory loss and depressive-like behavior in mice treated with LPS, probably because itincreased spine density, ameliorated synapsis dysfunction and activated the PI3K/AKT pathway. Irbesartan elevated the levels of hippocampalsuperoxide dismutase2 andglutathione peroxidaseandsuppressed LPS-induced astrogliosis. CONCLUSIONS: Overall, this study provides compelling evidence that multiple intranasal administrations of irbesartan can effectively prevent LPS-induced cognitive decline by activating pathways involved in neuroprotection and anti-inflammatory events. These findings underscore the potential of irbesartan as a preventive strategy against the development of AD and other neurodegenerative conditions associated with neuroinflammation.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Male , Mice , Animals , Irbesartan/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt , Lipopolysaccharides/therapeutic use , Phosphatidylinositol 3-Kinases , Neuroinflammatory Diseases , Angiotensin Receptor Antagonists , Administration, Intranasal , Alzheimer Disease/drug therapy , Cognitive Dysfunction/drug therapy , Anti-Inflammatory Agents/therapeutic use
5.
Biomed Pharmacother ; 167: 115623, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37783154

ABSTRACT

Elafibranor is a dual peroxisome proliferator-activated receptor (PPAR)α and ß/δ agonist that has reached a phase III clinical trial for the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we examined the effects of elafibranor in mice fed a choline-deficient high-fat diet (CD-HFD), a model of metabolic dysfunction-associated steatohepatitis (MASH) that presents obesity and insulin resistance. Our findings revealed that elafibranor treatment ameliorated steatosis, inflammation, and fibrogenesis in the livers of CD-HFD-fed mice. Unexpectedly, elafibranor also increased the levels of the epithelial-mesenchymal transition (EMT)-promoting protein S100A4 via PPARß/δ activation. The increase in S100A4 protein levels caused by elafibranor was accompanied by changes in the levels of markers associated with the EMT program. The S100A4 induction caused by elafibranor was confirmed in the BRL-3A rat liver cells and a mouse primary hepatocyte culture. Furthermore, elafibranor reduced the levels of ASB2, a protein that promotes S100A4 degradation, while ASB2 overexpression prevented the stimulating effect of elafibranor on S100A4. Collectively, these findings reveal an unexpected hepatic effect of elafibranor on increasing S100A4 and promoting the EMT program.


Subject(s)
Non-alcoholic Fatty Liver Disease , PPAR delta , PPAR-beta , Animals , Mice , Rats , Diet, High-Fat , Epithelial-Mesenchymal Transition , Liver , Non-alcoholic Fatty Liver Disease/metabolism , PPAR delta/metabolism , PPAR-beta/agonists , PPAR-beta/metabolism , PPAR-beta/therapeutic use
6.
Int J Mol Sci ; 24(18)2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37762479

ABSTRACT

Licochalcone A (Lico-A) is a flavonoid compound derived from the root of the Glycyrrhiza species, a plant commonly used in traditional Chinese medicine. While the Glycyrrhiza species has shown promise in treating various diseases such as cancer, obesity, and skin diseases due to its active compounds, the investigation of Licochalcone A's effects on the central nervous system and its potential application in Alzheimer's disease (AD) treatment have garnered significant interest. Studies have reported the neuroprotective effects of Lico-A, suggesting its potential as a multitarget compound. Lico-A acts as a PTP1B inhibitor, enhancing cognitive activity through the BDNF-TrkB pathway and exhibiting inhibitory effects on microglia activation, which enables mitigation of neuroinflammation. Moreover, Lico-A inhibits c-Jun N-terminal kinase 1, a key enzyme involved in tau phosphorylation, and modulates the brain insulin receptor, which plays a role in cognitive processes. Lico-A also acts as an acetylcholinesterase inhibitor, leading to increased levels of the neurotransmitter acetylcholine (Ach) in the brain. This mechanism enhances cognitive capacity in individuals with AD. Finally, Lico-A has shown the ability to reduce amyloid plaques, a hallmark of AD, and exhibits antioxidant properties by activating the nuclear factor erythroid 2-related factor 2 (Nrf2), a key regulator of antioxidant defense mechanisms. In the present review, we discuss the available findings analyzing the potential of Lico-A as a neuroprotective agent. Continued research on Lico-A holds promise for the development of novel treatments for cognitive disorders and neurodegenerative diseases, including AD. Further investigations into its multitarget action and elucidation of underlying mechanisms will contribute to our understanding of its therapeutic potential.


Subject(s)
Alzheimer Disease , Chalcones , Humans , Antioxidants/pharmacology , Antioxidants/therapeutic use , Alzheimer Disease/drug therapy , Acetylcholinesterase , Chalcones/pharmacology , Chalcones/therapeutic use
7.
Antioxidants (Basel) ; 12(8)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37627495

ABSTRACT

Neurodegenerative disorders are characterized by a progressive process of degeneration and neuronal death, where oxidative stress and neuroinflammation are key factors that contribute to the progression of these diseases. Therefore, two major pathways involved in these pathologies have been proposed as relevant therapeutic targets: The nuclear transcription factor erythroid 2 (Nrf2), which responds to oxidative stress with cytoprotecting activity; and the nuclear factor NF-κB pathway, which is highly related to the neuroinflammatory process by promoting cytokine expression. Caffeic acid phenethyl ester (CAPE) is a phenylpropanoid naturally found in propolis that shows important biological activities, including neuroprotective activity by modulating the Nrf2 and NF-κB pathways, promoting antioxidant enzyme expression and inhibition of proinflammatory cytokine expression. Its simple chemical structure has inspired the synthesis of many derivatives, with aliphatic and/or aromatic moieties, some of which have improved the biological properties. Moreover, new drug delivery systems increase the bioavailability of these compounds in vivo, allowing its transcytosis through the blood-brain barrier, thus protecting brain cells from the increased inflammatory status associated to neurodegenerative and psychiatric disorders. This review summarizes the biosynthesis and chemical synthesis of CAPE derivatives, their miscellaneous activities, and relevant studies (from 2010 to 2023), addressing their neuroprotective activity in vitro and in vivo.

8.
Ageing Res Rev ; 90: 101998, 2023 09.
Article in English | MEDLINE | ID: mdl-37414155

ABSTRACT

Depression and Alzheimer´s disease (AD) are two disorders highly prevalent worldwide. Depression affects more than 300 million people worldwide while AD affects 60-80% of the 55 million cases of dementia. Both diseases are affected by aging with high prevalence in elderly and share not only the main brain affected areas but also several physiopathological mechanisms. Depression disease is already ascribed as a risk factor to the development of AD. Despite the wide diversity of pharmacological treatments currently available in clinical practice for depression management, they remain associated to a slow recovery process and to treatment-resistant depression. On the other hand, AD treatment is essentially based in symptomatology relieve. Thus, the need for new multi-target treatments arises. Herein, we discuss the current state-of-art regarding the contribution of the endocannabinoid system (ECS) in synaptic transmission processes, synapses plasticity and neurogenesis and consequently the use of exogenous cannabinoids in the treatment of depression and on delaying the progression of AD. Besides the well-known imbalance of neurotransmitter levels, including serotonin, noradrenaline, dopamine and glutamate, recent scientific evidence highlights aberrant spine density, neuroinflammation, dysregulation of neurotrophic factor levels and formation of amyloid beta (Aß) peptides, as the main physiopathological mechanisms compromised in depression and AD. The contribution of the ECS in these mechanisms is herein specified as well as the pleiotropic effects of phytocannabinoids. At the end, it became evident that Cannabinol, Cannabidiol, Cannabigerol, Cannabidivarin and Cannabichromene may act in novel therapeutic targets, presenting high potential in the pharmacotherapy of both diseases.


Subject(s)
Alzheimer Disease , Cannabidiol , Humans , Aged , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Depression , Brain/metabolism , Cannabidiol/therapeutic use
9.
Heliyon ; 9(7): e17873, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37483818

ABSTRACT

Background: Metformin has been introduced as a neuroprotective agent in recent years. Here we evaluate the therapeutic effects of metformin in sporadic mouse model of Alzheimer's disease (SAD). Methods: AD was induced by streptozotocin (STZ, 0.5 mg/kg) on days 1 and 3. Metformin (MET, 200 mg/kg per day) was used for two weeks. Novel objective recognition (NOR) and Barnes Maze test were used to test the learning and memory. Nissl staining was used as s histological method for counting the dying neurons in different regions of hippocampus. Immunofluorescence staining against glial fibrillary acidic protein (GFAP), ionized calcium binding adaptor molecule 1 (Iba1) and NeuN were used to visualize reactive astrocytes, microglia and neurons, respectively. Results: In NOR test, the discrimination indices in the STZ group were significantly lower than the control and treatment groups. Goal sector/non-goal sector (GS/NGS) ratio index in Barnes maze was increased in metformin group compared to other groups. The number of dying neurons was increased by SAD and metformin reduced it. GFAP level was increased in CA1, CA3 and cortex of STZ group and reversed following the treatment. Iba1 level was significantly higher in STZ group in CA3 and cortex regions compared to Control and decreased by metformin in CA3 and cortex. Counting NeuN+ cells demonstrated significant reduction of neurons in DG+CA1 and CA3 after SAD induction. Significance: Metformin decreased inflammatory cells and reactive astrocytes as well as the dying neurons in the hippocampus region and the cortex in SAD, and improved the cognitive performance.

10.
Colloids Surf B Biointerfaces ; 228: 113394, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37301018

ABSTRACT

Ocular inflammation is one of the most prevalent diseases in ophthalmology and it is currently treated using eye drops of nonsteroidal antiinflammatory drugs such as dexibuprofen (DXI). However, their bioavailability is low and therefore, PLGA nanoparticles constitute a suitable approach to be administered as eyedrops. Therefore, DXI has been encapsulated into PLGA nanoparticles (DXI-NPs). Although the eye, and specifically the cornea, suffers from age-related changes in its composition, current medications are not focused on these variations. Therefore, to elucidate the interaction mechanism of DXI-NPs with the cornea in relation with age, two different corneal membrane models have been developed (corresponding to adult and elder population) using lipid monolayers, large and giant unilamellar vesicles. Interactions of both DXI and DXI-NPs were studied with these models by means of Langmuir balance technique, dipole potential, anisotropy and confocal microscopy. In addition, fluorescently labelled nanoparticles were administered to mice in order to corroborate these data obtained in vitro. It was observed that DXI-NPs interact with lipid membranes through an adhesion process, mainly in the rigid regions and afterwards DXI-NPs are internalized by a wrapping process. Furthermore, differences on the dipole potential caused by DXI-NPs in each corneal membrane have been obtained due to the increase of membrane rigidity on the ECMM. Additionally, it can be confirmed that DXI-NPs adhere to Lo phase and also inside the lipid membrane. Finally, in vitro and in vivo results corroborate that DXI-NPs are adhered to the more ordered phase. Finally, differences between interactions of DXI-NPs with the elder and adult corneal tissue were observed.


Subject(s)
Cornea , Nanoparticles , Mice , Animals , Ibuprofen/pharmacology , Lipids
11.
Int J Pharm ; 639: 122982, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37116598

ABSTRACT

Licochalcone-A (Lico-A) PLGA NPs functionalized with cell penetrating peptides B6 and Tet-1 are proposed for the treatment of ocular anti-inflammatory diseases. In this work, we report the in vitro biocompatibility of cell penetrating peptides-functionalized Lico-A-loaded PLGA NPs in Caco-2 cell lines revealing a non-cytotoxic profile, and their anti-inflammatory activity against RAW 264.7 cell lines. Given the risk of hydrolysis of the liquid suspensions, freeze-drying was carried out testing different cryoprotectants (e.g., disaccharides, alcohols, and oligosaccharide-derived sugar alcohol) to prevent particle aggregation and mitigate physical stress. As the purpose is the topical eye instillation of the nanoparticles, to reduce precorneal wash-out, increase residence time and thus Lico-A bioavailability, an in-situ forming gel based on poloxamer 407 containing Lico-A loaded PLGA nanoparticles functionalized with B6 and Tet-1 for ocular administration has been developed. Developed formulations remain in a flowing semi-liquid state under non-physiological conditions and transformed into a semi-solid state under ocular temperature conditions (35 °C), which is beneficial for ocular administration. The pH, viscosity, texture parameters and gelation temperature results met the requirements for ophthalmic formulations. The gel has characteristics of viscoelasticity, suitable mechanical and mucoadhesive performance which facilitate its uniform distribution over the conjunctiva surface. In conclusion, we anticipate the potential clinical significance of our developed product provided that a synergistic effect is achieved by combining the high anti-inflammatory activity of Lico-A delivered by PLGA NPs with B6 and Tet-1 for site-specific targeting in the eye, using an in-situ forming gel.


Subject(s)
Cell-Penetrating Peptides , Nanoparticles , Humans , Caco-2 Cells , Anti-Inflammatory Agents , Nanoparticles/chemistry , Eye
12.
Cell Biosci ; 13(1): 52, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36895036

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is characterized by a polyetiological origin. Despite the global burden of AD and the advances made in AD drug research and development, the cure of the disease remains elusive, since any developed drug has demonstrated effectiveness to cure AD. Strikingly, an increasing number of studies indicate a linkage between AD and type 2 diabetes mellitus (T2DM), as both diseases share some common pathophysiological features. In fact, ß-secretase (BACE1) and acetylcholinesterase (AChE), two enzymes involved in both conditions, have been considered promising targets for both pathologies. In this regard, due to the multifactorial origin of these diseases, current research efforts are focusing on the development of multi-target drugs as a very promising option to derive effective treatments for both conditions. In the present study, we evaluated the effect of rhein-huprine hybrid (RHE-HUP), a synthesized BACE1 and AChE inhibitor, both considered key factors not only in AD but also in metabolic pathologies. Thus, the aim of this study is to evaluate the effects of this compound in APP/PS1 female mice, a well-established familial AD mouse model, challenged by high-fat diet (HFD) consumption to concomitantly simulate a T2DM-like condition. RESULTS: Intraperitoneal treatment with RHE-HUP in APP/PS1 mice for 4 weeks reduced the main hallmarks of AD, including Tau hyperphosphorylation, Aß42 peptide levels and plaque formation. Moreover, we found a decreased inflammatory response together with an increase in different synaptic proteins, such as drebrin 1 (DBN1) or synaptophysin, and in neurotrophic factors, especially in BDNF levels, correlated with a recovery in the number of dendritic spines, which resulted in memory improvement. Notably, the improvement observed in this model can be attributed directly to a protein regulation at central level, since no peripheral modification of those alterations induced by HFD consumption was observed. CONCLUSIONS: Our results suggest that RHE-HUP could be a new candidate for the treatment of AD, even for individuals with high risk due to peripheral metabolic disturbances, given its multi-target profile which allows for the improvement of some of the most important hallmarks of the disease.

13.
Biomed Pharmacother ; 155: 113709, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36126456

ABSTRACT

Protein tyrosine phosphatase 1B (PTP1B) is a typical member of the PTP family, considered a direct negative regulator of several receptor and receptor-associated tyrosine kinases. This widely localized enzyme has been involved in the pathophysiology of several diseases. More recently, PTP1B has attracted attention in the field of neuroscience, since its activation in brain cells can lead to schizophrenia-like behaviour deficits, anxiety-like effects, neurodegeneration, neuroinflammation and depression. Conversely, PTP1B inhibition has been shown to prevent microglial activation, thus exerting a potent anti-inflammatory effect and has also shown potential to increase the cognitive process through the stimulation of hippocampal insulin, leptin and BDNF/TrkB receptors. Notwithstanding, most research on the clinical efficacy of targeting PTP1B has been developed in the field of obesity and type 2 diabetes mellitus (TD2M). However, despite the link existing between these metabolic alterations and neurodegeneration, no clinical trials assessing the neurological advantages of PTP1B inhibition have been performed yet. Preclinical studies, though, have provided strong evidence that targeting PTP1B could allow to reach different pathophysiological mechanisms at once. herefore, specific interventions or trials should be designed to modulate PTP1B activity in brain, since it is a promising strategy to decelerate or prevent neurodegeneration in aged individuals, among other neurological diseases. The present paper fails to include all neurological conditions in which PTP1B could have a role; instead, it focuses on those which have been related to metabolic alterations and neurodegenerative processes. Moreover, only preclinical data is discussed, since clinical studies on the potential of PTP1B inhibition for treating neurological diseases are still required.


Subject(s)
Diabetes Mellitus, Type 2 , Nervous System Diseases , Humans , Aged , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Leptin , Diabetes Mellitus, Type 2/drug therapy , Brain-Derived Neurotrophic Factor , Insulin/therapeutic use , Nervous System Diseases/drug therapy , Anti-Inflammatory Agents/therapeutic use , Tyrosine , Enzyme Inhibitors/pharmacology
15.
Front Pharmacol ; 13: 902047, 2022.
Article in English | MEDLINE | ID: mdl-35899125

ABSTRACT

Peroxisome proliferator-activated receptor ß/δ (PPARß/δ), the most PPAR abundant isotype in the central nervous system, is involved in microglial homeostasis and metabolism, whose disturbances have been demonstrated to play a key role in memory impairment. Although PPARß/δ function is well-established in metabolism, its contribution to neuronal and specifically memory process is underexplored. Therefore, the aim of the study is to determine the role of PPARß/δ in the neuropathological pathways involved in memory impairment and as to whether a risk factor implicated in memory loss such as obesity modulates neuropathological markers. To carry out this study, 6-month-old total knock-out for the Ppard gene male mice with C57BL/6X129/SV background (PPARß/δ-/-) and wild-type (WT) littermates with the same genetic background were used. Animals were fed, after the weaning (at 21 days old), and throughout their growth, either conventional chow (CT) or a palmitic acid-enriched diet (HFD). Thus, four groups were defined: WT CT, WT HFD, PPARß/δ-/- CT, and PPARß/δ-/- HFD. Before sacrifice, novel object recognition test (NORT) and glucose and insulin tolerance tests were performed. After that, animals were sacrificed by intracardiac perfusion or cervical dislocation. Different techniques, such as GolgiStain kit or immunofluorescence, were used to evaluate the role of PPARß/δ in memory dysfunction. Our results showed a decrease in dendritic spine density and synaptic markers in PPARß/δ-/- mice, which were corroborated in the NORT. Likewise, our study demonstrated that the lack of PPARß/δ receptor enhances gliosis in the hippocampus, contributing to astrocyte and microglial activation and to the increase in neuroinflammatory biomarkers. Additionally, alterations in the hippocampal insulin receptor pathway were found. Interestingly, while some of the disturbances caused by the lack of PPARß/δ were not affected by feeding the HFD, others were exacerbated or required the combination of both factors. Taken together, the loss of PPARß/δ-/- affects neuronal and synaptic structure, contributing to memory dysfunction, and they also present this receptor as a possible new target for the treatment of memory impairment.

16.
Front Biosci (Landmark Ed) ; 27(5): 146, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35638413

ABSTRACT

The increases in population ageing and growth are leading to a boosting in the number of people living with dementia, Alzheimer's disease (AD) being the most common cause. In spite of decades of intensive research, no cure for AD has been found yet. However, some treatments that may change disease progression and help control symptoms have been proposed. Beyond the classical hypotheses of AD etiopathogenesis, i.e., amyloid beta peptide (Aß) accumulation and tau hyperphosphorylation, a trend in attributing a key role to other molecular mechanisms is prompting the study of different therapeutic targets. Hence, drugs designed to modulate inflammation, insulin resistance, synapses, neurogenesis, cardiovascular factors and dysbiosis are shaping a new horizon in AD treatment. Within this frame, an increase in the number of candidate drugs for disease modification treatments is expected, as well as a focus on potential combinatory multidrug strategies.The present review summarizes the latest advances in drugs targeting Aß and tau as major contributors to AD pathophysiology. In addition, it introduces the most important drugs in clinical studies targeting alternative mechanisms thought to be involved in AD's neurodegenerative process.


Subject(s)
Alzheimer Disease , Alzheimer Disease/drug therapy , Amyloid beta-Peptides , Disease Progression , Humans
17.
Mol Med ; 28(1): 48, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35508978

ABSTRACT

BACKGROUND AND AIM: The appearance of alterations in normal metabolic activity has been increasingly considered a risk factor for the development of sporadic and late-onset neurodegenerative diseases. In this report, we induced chronic metabolic stress by feeding of a high-fat diet (HFD) in order to study its consequences in cognition. We also studied the effects of a loss of function of isoforms 1 and 3 of the c-Jun N-terminal Kinases (JNK), stress and cell death response elements. METHODS: Animals were fed either with conventional chow or with HFD, from their weaning until their sacrifice at 9 months. Before sacrifice, body weight, intraperitoneal glucose and insulin tolerance test (IP-GTT and IP­ITT) were performed to evaluate peripheral biometrics. Additionally, cognitive behavioral tests and analysis of spine density were performed to assess cognitive function. Molecular studies were carried out to confirm the effects of metabolic stressors in the hippocampus relative to cognitive loss. RESULTS: Our studies demonstrated that HFD in Jnk3-/- lead to synergetic responses. Loss of function of JNK3 led to increased body weight, especially when exposed to an HFD and they had significantly decreased response to insulin. These mice also showed increased stress in the endoplasmic reticulum and diminished cognitive capacity. However, loss of function of JNK1 promoted normal or heightened energetic metabolism and preserved cognitive function even when chronically metabolically stressed. CONCLUSIONS: Downregulation of JNK3 does not seem to be a suitable target for the modulation of energetic-cognitive dysregulations while loss of function of JNK1 seems to promote a good metabolic-cognitive profile, just like resistance to the negative effects of chronic feeding with HFD.


Subject(s)
Hippocampus , Mitogen-Activated Protein Kinase 8 , Animals , Body Weight , Cognition , Diet, High-Fat/adverse effects , Hippocampus/metabolism , Insulin/metabolism , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 8/genetics , Mitogen-Activated Protein Kinase 8/metabolism
18.
Curr Pharm Des ; 28(14): 1187-1197, 2022.
Article in English | MEDLINE | ID: mdl-35524676

ABSTRACT

BACKGROUND: Ischemic stroke produces a large health impact worldwide, with scarce therapeutic options. OBJECTIVE: This study aimed to reveal the role of NADPH oxidase and neuroinflammatory genes in the cerebral anti-ischemic effects of C-Phycocyanin (C-PC), the chief biliprotein of Spirulina platensis. METHODS: Rats with either focal cerebral ischemia/reperfusion (I/R) or acute brain hypoperfusion, received C-PC at different doses, or a vehicle, for up to 6 h post-stroke. Neurological, behavioral and histochemical parameters were assessed in I/R rats at 24 h. Cerebral gene expression and hippocampal neuron viability were evaluated in hypoperfused rats at acute (24 h) or chronic phases (30 days), respectively. A molecular docking analysis of NOX2 and C-PC-derived Phycocyanobilin (PCB) was also performed. RESULTS: C-PC, obtained with a purity of 4.342, significantly reduced the infarct volume and neurological deficit in a dose-dependent manner, and improved the exploratory activity of I/R rats. This biliprotein inhibited NOX2 expression, a crucial NADPH oxidase isoform in the brain, and the superoxide increase produced by the ischemic event. Moreover, C-PC-derived PCB showed a high binding affinity in silico with NOX2. C-PC downregulated the expression of pro-inflammatory genes (IFN-γ, IL-6, IL-17A, CD74, CCL12) and upregulated immune suppressive genes (Foxp3, IL-4, TGF-ß) in hypoperfused brain areas. This compound also decreased chronic neuronal death in the hippocampus of hypoperfused rats. CONCLUSION: These results suggest that the inhibition of cerebral NADPH oxidase and the improvement of neuroinflammation are key mechanisms mediating the neuroprotective actions of C-PC against brain ischemia.


Subject(s)
Brain Ischemia , Neuroprotective Agents , Reperfusion Injury , Animals , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Disease Models, Animal , Molecular Docking Simulation , NADPH Oxidases/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Phycocyanin/pharmacology , Phycocyanin/therapeutic use , Rats , Reperfusion Injury/drug therapy
19.
Ageing Res Rev ; 77: 101612, 2022 05.
Article in English | MEDLINE | ID: mdl-35346852

ABSTRACT

Alzheimer's disease (AD) is a well-known neurodegenerative disease characterized by the presence of two main hallmarks - Tau hyperphosphorylation and Aß deposits. Notwithstanding, in the last few years the scientific evidence about the drivers of AD have been changing and nowadays age-related vascular alterations and several cardiovascular risk factors have been shown to trigger the development of AD. In this context, drugs targeting the Renin Angiotensin System (RAS), commonly used for the treatment of hypertension, are evidencing a high potential to delay AD development due to their action on brain RAS. Indeed, the ACE 1/Ang II/AT1R axis is believed to be upregulated in AD and to be responsible for deleterious effects such as increased oxidative stress, neuroinflammation, blood-brain barrier (BBB) hyperpermeability, astrocytes dysfunction and a decrease in cerebral blood flow. In contrast, the alternative axis - ACE 1/Ang II/AT2R; ACE 2/Ang (1-7)/MasR; Ang IV/ AT4R(IRAP) - seems to counterbalance the deleterious effects of the principal axis and to exert beneficial effects on memory and cognition. Accordingly, retrospective studies demonstrate a reduced risk of developing AD among people taking RAS medication as well as several in vitro and in vivo pre-clinical studies as it is herein critically reviewed. In this review, we first revise, at a glance, the pathophysiology of AD focused on its classic hallmarks. Secondly, an overview about the impact of the RAS on the pathophysiology of AD is also provided, focused on their four essential axes ACE 1/Ang II/AT2R; ACE 2/Ang (1-7)/MasR; Ang IV/ AT4R(IRAP) and ACE 1/Ang II/AT1R. Finally, the therapeutic potential of available drugs targeting RAS on AD, namely angiotensin II receptor blockers (ARBs) and angiotensin converting enzyme inhibitors (ACEIs), is highlighted and data supporting this hope will be presented, from in vitro and in vivo pre-clinical to clinical studies.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Alzheimer Disease/drug therapy , Alzheimer Disease/prevention & control , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Brain/metabolism , Humans , Neurodegenerative Diseases/drug therapy , Peptidyl-Dipeptidase A/metabolism , Renin-Angiotensin System/physiology , Retrospective Studies
20.
Pharmaceutics ; 14(2)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35214019

ABSTRACT

Licochalcone-A is a natural compound with anti-inflammatory properties. However, it possesses low water solubility, making its application for the treatment of ocular inflammation difficult. To overcome this drawback, biodegradable nanoparticles incorporating Licochalcone-A have been developed. Additionally, to avoid fast clearance and increase cellular internalization into the ocular tissues, PLGA nanoparticles have been functionalized using PEG and cell penetrating peptides (Tet-1 and B6). To optimize the formulations, a factorial design was carried out and short-term stability of the nanoparticles was studied. Moreover, morphology was also observed by transmission electron microcopy and in vitro drug release was carried out. Ocular tolerance of the formulations was ensured in vitro and in vivo and anti-inflammatory therapeutic efficacy was also assessed. Surface functionalized nanoparticles loading Licochalcone-A were developed with an average size below 200 nm, a positive surface charge, and a monodisperse population. The formulations were non-irritant and showed a prolonged Licochalcone-A release. Despite the fact that both Licochalcone-A Tet-1 and B6 functionalized nanoparticles demonstrated to be suitable for the treatment of ocular inflammation, B6 targeted nanoparticles provided greater therapeutic efficacy in in vivo assays.

SELECTION OF CITATIONS
SEARCH DETAIL
...