Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 931: 172977, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38703836

ABSTRACT

The reuse of treated wastewater (TWW) for irrigation appears to be a relevant solution to the challenges of growing water demand and scarcity. However, TWW contains not only micro-pollutants including pharmaceutical residues but also antibiotic resistant bacteria. The reuse of TWW could contribute to the dissemination of antimicrobial resistance in the environment. The purpose of this study was to assess if exogenous bacteria from irrigation waters (TWW or tap water-TP) affect endogenous soil microbial communities (from 2 soils with distinct irrigation history) and key antibiotic resistance gene sul1 and mobile genetic elements intl1 and IS613. Experiments were conducted in microcosms, irrigated in one-shot, and monitored for three months. Results showed that TP or TWW exposure induced a dynamic response of soil microbial communities but with no significant increase of resistance and mobile gene abundances. However, no significant differences were observed between the two water types in the current experimental design. Despite this, the 16S rDNA analysis of the two soils irrigated for two years either with tap water or TWW resulted in soil microbial community differentiation and the identification of biomarkers from Xanthomonadaceae and Planctomycetes families for soils irrigated with TWW. Low-diversity soils were more sensitive to the addition of TWW. Indeed, TWW exposure stimulated the growth of bacterial genera known to be pathogenic, correlating with a sharp increase in the copy number of selected resistance genes (up to 3 logs). These low-diversity soils could thus enable the establishment of exogenous bacteria from TWW which was not observed with native soils. In particular, the emergence of Planctomyces, previously suggested as a biomarker of soil irrigated by TWW, was here demonstrated. Finally, this study showed that water input frequency, initial soil microbial diversity and soil history drive changes within soil endogenous communities and the antibiotic resistance gene pool.


Subject(s)
Agricultural Irrigation , Soil Microbiology , Wastewater , Wastewater/microbiology , Agricultural Irrigation/methods , Drug Resistance, Microbial/genetics , Waste Disposal, Fluid/methods , Bacteria , Soil/chemistry , Microbiota/drug effects , Drug Resistance, Bacterial/genetics
2.
J Environ Sci Health B ; 58(3): 273-284, 2023.
Article in English | MEDLINE | ID: mdl-36861268

ABSTRACT

Spatial-temporal monitoring of the presence of pesticides and pharmaceuticals in water requires rigor in the choice of matrix to be analyzed. The use of matrices, isolated or combined, may better represent the real state of contamination. In this sense, the present work contrasted the effectiveness of using epilithic biofilms with active water sampling and with a passive sampler-POCIS. A watershed representative of South American agriculture was monitored. Nine sites with different rural anthropic pressures (natural forest, intensive use of pesticides, and animal waste), and urban areas without sewage treatment, were monitored. Water and epilithic biofilms were collected during periods of intensive pesticide and animal waste application. After the harvest of the spring/summer crop, a period of low agrochemical input, the presence of pesticides and pharmaceuticals was monitored using the POCIS and epilithic biofilms. The spot water sampling leads to underestimation of the level of contamination of water resources as it does not allow discrimination of different anthropic pressures in rural areas. The use of endogenous epilithic biofilms as a matrix for the analysis of pesticides and pharmaceuticals is a viable and highly recommended alternative to diagnose the health of water sources, especially if associated with the use of POCIS.


Subject(s)
Pesticides , Water Pollutants, Chemical , Pesticides/analysis , Brazil , Information Sources , Environmental Monitoring , Water Pollutants, Chemical/analysis , Biofilms , Pharmaceutical Preparations , Rivers
3.
Chemosphere ; 275: 130103, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33677272

ABSTRACT

Extracellular polymeric substances (EPS) produced by microorganisms have a key role in the sedimentary compartment, e.g. promoting aggregation and biostabilisation of sediment particles and increasing chemical reactivity at the water/sediment interface. Therefore, proper extraction methods are needed to study this EPS matrix. In this work, nine extraction methods based on physical (centrifugation, sonication), chemical (sodium hydroxide, sodium pyrophosphate, sodium tetraborate), and both chemical and physical (cation exchange resins, i.e. CER) treatments and their combinations, as well as the solid:liquid ratio used for extraction, were compared based on the quantity and compositions of extracted EPS. The organic carbon extracted was quantified and the nature of biochemical macromolecules (proteins, polysaccharides, and humic-like compounds) was evaluated using colorimetric methods. The amount of ATP was used as an indicator of cell lysis and showed contamination with intracellular materials in EPS extracted with chemical methods. Moreover, chemical extraction presented a large quantity of impurities due to non-removal of reactant salts by ultracentrifugation. For the nine methods tested, humic-like substances represented the main fraction of the extracted EPS, but for chemical extraction, the presence of humic materials from the sediment organic fraction was due to non-specific extraction of the EPS fraction. Therefore, chemicals methods are not recommended to extract EPS from sediment. Despite their low extraction efficiency, physical methods and CER, i.e. 'soft' extraction methods, are preferred using a solid:liquid ratio 1:40.


Subject(s)
Extracellular Polymeric Substance Matrix , Lakes , Cation Exchange Resins , Polymers , Sewage , Sodium Hydroxide
4.
Environ Monit Assess ; 192(6): 381, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32430726

ABSTRACT

Brazil is one of the largest consumers of pesticides in the world. The high rainfall rate and inadequate soil use and management promote the transfer of these compounds to the aquatic system. The aim of this study was to identify and quantify pesticides present in epilithic biofilms in order to evaluate the effectiveness of this matrix as a bioindicator able to discriminate areas and periods with different inputs of pesticides. Among the 25 pesticides analyzed in the biofilms, 20 compounds were detected. The epilithic biofilms picked up pesticides independent of their polarities, even in the period of lower use. The frequency and median concentration of five herbicides (2,4-D, atrazine, desethyl-atrazine, simazine, nicosulfuron), three fungicides (carbendazim, epoxiconazole, tebuconazole), and one insecticide (imidacloprid) were highest in biofilms sampled in summer crops during the growing period. Biofilms collected in the upper region of the catchment, where genetically modified soybean and corn cultivated in a no-tillage system prevail, the highest frequency and median concentration of three herbicides (2,4-D, thifensulfuron, isoproturon), four fungicides (carbendazim, epoxiconazole, tebuconazole, metconazole), and one insecticide (imidacloprid) were observed. Despite the excessive amounts of pesticides used in the catchment, the median values of all pesticides in the epilithic biofilm were considered low. The lower diversity and concentration of pesticides observed in the autumn/winter season is representative of lower use of pesticides, barriers to pesticide transfer from soil to water, and the biofilm's resilience capacity to decompose pesticides.


Subject(s)
Agriculture , Biofilms , Pesticides , Bioaccumulation , Biomarkers , Brazil , Environmental Monitoring , Pesticides/pharmacokinetics , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...