Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
PLoS One ; 19(7): e0307549, 2024.
Article in English | MEDLINE | ID: mdl-39038009

ABSTRACT

Prochlorococcus marinus, the smallest picocyanobacterium, comprises multiple clades occupying distinct niches, currently across tropical and sub-tropical oligotrophic ocean regions, including Oxygen Minimum Zones. Ocean warming may open growth-permissive temperatures in new, poleward photic regimes, along with expanded Oxygen Minimum Zones. We used ocean metaproteomic data on current Prochlorococcus marinus niches, to guide testing of Prochlorococcus marinus growth across a matrix of peak irradiances, photoperiods, spectral bands and dissolved oxygen. MED4 from Clade HLI requires greater than 4 h photoperiod, grows at 25 µmol O2 L-1 and above, and exploits high cumulative diel photon doses. MED4, however, relies upon an alternative oxidase to balance electron transport, which may exclude it from growth under our lowest, 2.5 µmol O2 L-1, condition. SS120 from clade LLII/III is restricted to low light under full 250 µmol O2 L-1, shows expanded light exploitation under 25 µmol O2 L-1, but is excluded from growth under 2.5 µmol O2 L-1. Intermediate oxygen suppresses the cost of PSII photoinactivation, and possibly the enzymatic production of H2O2 in SS120, which has limitations on genomic capacity for PSII and DNA repair. MIT9313 from Clade LLIV is restricted to low blue irradiance under 250 µmol O2 L-1, but exploits much higher irradiance under red light, or under lower O2 concentrations, conditions which slow photoinactivation of PSII and production of reactive oxygen species. In warming oceans, range expansions and competition among clades will be governed not only by light levels. Short photoperiods governed by latitude, temperate winters, and depth attenuation of light, will exclude clade HLI (including MED4) from some habitats. In contrast, clade LLII/III (including SS120), and particularly clade LLIV (including MIT9313), may exploit higher light niches nearer the surface, under expanding OMZ conditions, where low O2 relieves the stresses of oxidation stress and PSII photoinhibition.


Subject(s)
Light , Oxygen , Prochlorococcus , Oxygen/metabolism , Prochlorococcus/metabolism , Prochlorococcus/genetics , Prochlorococcus/growth & development , Prochlorococcus/radiation effects , Seawater/microbiology , Seawater/chemistry , Photoperiod
2.
New Phytol ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38840553

ABSTRACT

Contemporary glaciers are inhabited by streptophyte algae that balance photosynthesis and growth with tolerance of low temperature, desiccation and UV radiation. These same environmental challenges have been hypothesised as the driving force behind the evolution of land plants from streptophyte algal ancestors in the Cryogenian (720-635 million years ago). We sequenced, assembled and analysed the metagenome-assembled genome of the glacier alga Ancylonema nordenskiöldii to investigate its adaptations to life in ice, and whether this represents a vestige of Cryogenian exaptations. Phylogenetic analysis confirms the placement of glacier algae within the sister lineage to land plants, Zygnematophyceae. The metagenome-assembled genome is characterised by an expansion of genes involved in tolerance of high irradiance and UV light, while lineage-specific diversification is linked to the novel screening pigmentation of glacier algae. We found no support for the hypothesis of a common genomic basis for adaptations to ice and to land in streptophytes. Comparative genomics revealed that the reductive morphological evolution in the ancestor of Zygnematophyceae was accompanied by reductive genome evolution. This first genome-scale data for glacier algae suggests an Ancylonema-specific adaptation to the cryosphere, and sheds light on the genome evolution of land plants and Zygnematophyceae.

3.
Microb Ecol ; 87(1): 40, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351424

ABSTRACT

It has long been hypothesized that benthic motile pennate diatoms use phototaxis to optimize photosynthesis and minimize photoinhibitory damage by adjusting their position within vertical light gradients in coastal benthic sediments. However, experimental evidence to test this hypothesis remains inconclusive, mainly due to methodological difficulties in studying cell behavior and photosynthesis over realistic spatial microscale gradients of irradiance and cell position. In this study, a novel experimental approach was developed and used to test the hypothesis of photosynthesis optimization through motility, based on the combination of single-cell in vivo chlorophyll fluorometry and microfluidic chips. The approach allows the concurrent study of behavior and photosynthetic activity of individual cells of the epipelic diatom species Craspedostauros britannicus exposed to a light microgradient of realistic dimensions, simulating the irradiance and distance scales of light microgradients in benthic sediments. Following exposure to light, (i) cells explored their light environment before initiating light-directed motility; (ii) cells used motility to lower their light dose, when exposed to the highest light intensities; and (iii) motility was combined with reversible non-photochemical quenching, to allow cells to avoid photoinhibition. The results of this proof-of-concept study not only strongly support the photoprotective nature of photobehavior in the studied species but also revealed considerable variability in how individual cells reacted to a light microgradient. The experimental setup can be readily applied to study motility and photosynthetic light responses of other diatom species or natural assemblages, as well as other photoautotrophic motile microorganisms, broadening the toolset for experimental microbial ecology research.


Subject(s)
Diatoms , Diatoms/physiology , Photosynthesis , Chlorophyll , Light , Cell Movement
4.
Front Microbiol ; 15: 1340413, 2024.
Article in English | MEDLINE | ID: mdl-38357349

ABSTRACT

CyanoCyc is a web portal that integrates an exceptionally rich database collection of information about cyanobacterial genomes with an extensive suite of bioinformatics tools. It was developed to address the needs of the cyanobacterial research and biotechnology communities. The 277 annotated cyanobacterial genomes currently in CyanoCyc are supplemented with computational inferences including predicted metabolic pathways, operons, protein complexes, and orthologs; and with data imported from external databases, such as protein features and Gene Ontology (GO) terms imported from UniProt. Five of the genome databases have undergone manual curation with input from more than a dozen cyanobacteria experts to correct errors and integrate information from more than 1,765 published articles. CyanoCyc has bioinformatics tools that encompass genome, metabolic pathway and regulatory informatics; omics data analysis; and comparative analyses, including visualizations of multiple genomes aligned at orthologous genes, and comparisons of metabolic networks for multiple organisms. CyanoCyc is a high-quality, reliable knowledgebase that accelerates scientists' work by enabling users to quickly find accurate information using its powerful set of search tools, to understand gene function through expert mini-reviews with citations, to acquire information quickly using its interactive visualization tools, and to inform better decision-making for fundamental and applied research.

5.
New Phytol ; 241(5): 2193-2208, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38095198

ABSTRACT

Diatoms, the main eukaryotic phytoplankton of the polar marine regions, are essential for the maintenance of food chains specific to Arctic and Antarctic ecosystems, and are experiencing major disturbances under current climate change. As such, it is fundamental to understand the physiological mechanisms and associated molecular basis of their endurance during the long polar night. Here, using the polar diatom Fragilariopsis cylindrus, we report an integrative analysis combining transcriptomic, microscopic and biochemical approaches to shed light on the strategies used to survive the polar night. We reveal that in prolonged darkness, diatom cells enter a state of quiescence with reduced metabolic and transcriptional activity, during which no cell division occurs. We propose that minimal energy is provided by respiration and degradation of protein, carbohydrate and lipid stores and that homeostasis is maintained by autophagy in prolonged darkness. We also report internal structural changes that manifest the morphological acclimation of cells to darkness, including the appearance of a large vacuole. Our results further show that immediately following a return to light, diatom cells are able to use photoprotective mechanisms and rapidly resume photosynthesis, demonstrating the remarkable robustness of polar diatoms to prolonged darkness at low temperature.


Subject(s)
Diatoms , Diatoms/metabolism , Ecosystem , Phytoplankton , Photosynthesis/physiology , Cold Temperature
6.
Article in English | MEDLINE | ID: mdl-38088179

ABSTRACT

Nonanatomic surgical stabilization of the unstable extensor carpi ulnaris (ECU) tendon (where the subluxing tendon is re-routed away from the bony groove in the distal ulna) utilizes a flap of extensor retinaculum to create a new retaining sheath that will stabilize the tendon during forearm rotation movements. When this surgery fails, the extensor retinaculum tissue does not regenerate with sufficient structural strength to be used again. Previously, a different approach has then been needed for revision surgery, often using more complex surgical techniques with a substantially greater impact on recovery. We describe a highly reliable yet simple method of using local soft tissue to adequately restabilize the subluxing ECU tendon in cases where an extensor retinacular flap has already been used. We report the results of this technique in 4 patients, all of whom returned to jobs/hobbies where ECU instability was a considerable functional risk.

7.
Microbiol Resour Announc ; 12(12): e0046023, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37943043

ABSTRACT

Cyanobium and Synechococcus are prominent, globally distributed cyanobacteria genera with ecological significance. Here, we report the genomes of the marine Synechococcus sp. CCMP836 and two strains of Cyanobium (CZS25K and CZS48M) along with the genomes of 17 co-occurring proteobacteria. These genomes will improve the strain-specific ecological positions.

8.
Mar Life Sci Technol ; 5(1): 116-125, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37073326

ABSTRACT

To examine the synergetic effects of ocean acidification (OA) and light intensity on the photosynthetic performance of marine diatoms, the marine centric diatom Thalassiosira weissflogii was cultured under ambient low CO2 (LC, 390 µatm) and elevated high CO2 (HC, 1000 µatm) levels under low-light (LL, 60 µmol m-2 s-1) or high-light (HL, 220 µmol m-2 s-1) conditions for over 20 generations. HL stimulated the growth rate by 128 and 99% but decreased cell size by 9 and 7% under LC and HC conditions, respectively. However, HC did not change the growth rate under LL but decreased it by 9% under HL. LL combined with HC decreased both maximum quantum yield (F V/F M) and effective quantum yield (Φ PSII), measured under either low or high actinic light. When exposed to UV radiation (UVR), LL-grown cells were more prone to UVA exposure, with higher UVA and UVR inducing inhibition of Φ PSII compared with HL-grown cells. Light use efficiency (α) and maximum relative electron transport rate (rETRmax) were inhibited more in the HC-grown cells when UVR (UVA and UVB) was present, particularly under LL. Our results indicate that the growth light history influences the cell growth and photosynthetic responses to OA and UVR. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-022-00138-x.

9.
PLoS One ; 18(4): e0284580, 2023.
Article in English | MEDLINE | ID: mdl-37098087

ABSTRACT

Marine phytoplankton produce and scavenge Reactive Oxygen Species, to support cellular processes, while limiting damaging reactions. Some prokaryotic picophytoplankton have, however, lost all genes encoding scavenging of hydrogen peroxide. Such losses of metabolic function can only apply to Reactive Oxygen Species which potentially traverse the cell membrane outwards, before provoking damaging intracellular reactions. We hypothesized that cell radius influences which elements of Reactive Oxygen Species metabolism are partially or fully dispensable from a cell. We therefore investigated genomes and transcriptomes from diverse marine eukaryotic phytoplankton, ranging from 0.4 to 44 µm radius, to analyze the genomic allocations encoding enzymes metabolizing Reactive Oxygen Species. Superoxide has high reactivity, short lifetimes and limited membrane permeability. Genes encoding superoxide scavenging are ubiquitous across phytoplankton, but the fractional gene allocation decreased with increasing cell radius, consistent with a nearly fixed set of core genes for scavenging superoxide pools. Hydrogen peroxide has lower reactivity, longer intracellular and extracellular lifetimes and readily crosses cell membranes. Genomic allocations to both hydrogen peroxide production and scavenging decrease with increasing cell radius. Nitric Oxide has low reactivity, long intracellular and extracellular lifetimes and readily crosses cell membranes. Neither Nitric Oxide production nor scavenging genomic allocations changed with increasing cell radius. Many taxa, however, lack the genomic capacity for nitric oxide production or scavenging. The probability of presence of capacity to produce nitric oxide decreases with increasing cell size, and is influenced by flagella and colony formation. In contrast, the probability of presence of capacity to scavenge nitric oxide increases with increasing cell size, and is again influenced by flagella and colony formation.


Subject(s)
Nitric Oxide , Superoxides , Reactive Oxygen Species/metabolism , Superoxides/metabolism , Nitric Oxide/metabolism , Hydrogen Peroxide/metabolism , Phytoplankton/genetics , Phytoplankton/metabolism , Genomics
10.
PLoS One ; 17(9): e0272822, 2022.
Article in English | MEDLINE | ID: mdl-36125987

ABSTRACT

Polar microalgae face two major challenges: 1- growing at temperatures (-1.7 to 5°C) that limit enzyme kinetics; and 2- surviving and exploiting a wide range of irradiance. The objective of this study is to understand the adaptation of an Arctic diatom to its environment by studying its ability to acclimate to changes in light and temperature. We acclimated the polar diatom Chaetoceros neogracilis to various light levels at two different temperatures and studied its growth and photosynthetic properties using semi-continuous cultures. Rubisco content was high, to compensate for low catalytic rates, but did not change detectably with growth temperature. Contrary to what is observed in temperate species, in C. neogracilis, carbon fixation rate (20 min 14C incorporation) equaled net growth rate (µ) suggesting very low or very rapid (<20 min) re-oxidation of the newly fixed carbon. The comparison of saturation irradiances for electron transport, oxygen net production and carbon fixation revealed alternative electron pathways that could provide energy and reducing power to the cell without consuming organic carbon which is a very limiting product at low temperatures. High protein contents, low re-oxidation of newly fixed carbon and the use of electron pathways alternative to carbon fixation may be important characteristics allowing efficient growth under those extreme environmental conditions.


Subject(s)
Diatoms , Carbon/metabolism , Oxygen , Ribulose-Bisphosphate Carboxylase/metabolism , Temperature
11.
Microorganisms ; 10(4)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35456871

ABSTRACT

Marine phytoplankton vary widely in size across taxa, and in cell suspension densities across habitats and growth states. Cell suspension density and total biovolume determine the bulk influence of a phytoplankton community upon its environment. Cell suspension density also determines the intercellular spacings separating phytoplankton cells from each other, or from co-occurring bacterioplankton. Intercellular spacing then determines the mean diffusion paths for exchanges of solutes among co-occurring cells. Marine phytoplankton and bacterioplankton both produce and scavenge reactive oxygen species (ROS), to maintain intracellular ROS homeostasis to support their cellular processes, while limiting damaging reactions. Among ROS, hydrogen peroxide (H2O2) has relatively low reactivity, long intracellular and extracellular lifetimes, and readily crosses cell membranes. Our objective was to quantify how cells can influence other cells via diffusional interactions, using H2O2 as a case study. To visualize and constrain potentials for cell-to-cell exchanges of H2O2, we simulated the decrease of [H2O2] outwards from representative phytoplankton taxa maintaining internal [H2O2] above representative seawater [H2O2]. [H2O2] gradients outwards from static cell surfaces were dominated by volumetric dilution, with only a negligible influence from decay. The simulated [H2O2] fell to background [H2O2] within ~3.1 µm from a Prochlorococcus cell surface, but extended outwards 90 µm from a diatom cell surface. More rapid decays of other, less stable ROS, would lower these threshold distances. Bacterioplankton lowered simulated local [H2O2] below background only out to 1.2 µm from the surface of a static cell, even though bacterioplankton collectively act to influence seawater ROS. These small diffusional spheres around cells mean that direct cell-to-cell exchange of H2O2 is unlikely in oligotrophic habits with widely spaced, small cells; moderate in eutrophic habits with shorter cell-to-cell spacing; but extensive within phytoplankton colonies.

12.
Funct Plant Biol ; 49(6): 421-431, 2022 05.
Article in English | MEDLINE | ID: mdl-33617759

ABSTRACT

Wah Soon (Fred) Chow has been a major contributor to photosynthesis research since the late 20th century. Fred, a quiet, gentle, smart and prolific writer, has contributed to our understanding of thylakoid structure, cyclic electron flow and the development of novel methods for phenotyping plants. However, a third of his productivity centres on the understanding of photoinhibition and photoprotection, which we honour herein. We give a brief biographical account of his academic trajectory, followed by a chronological and conceptual summary of his contributions to the field of photodamage and photoprotection. We thereby hope to introduce the work of Fred to young readers and non-experts in the field of photoinhibition.


Subject(s)
Photosynthesis , Photosystem II Protein Complex , Photosystem II Protein Complex/metabolism , Plants/metabolism , Thylakoids/metabolism
13.
Front Microbiol ; 12: 621634, 2021.
Article in English | MEDLINE | ID: mdl-34917040

ABSTRACT

Stable isotope probing (SIP) combined with nano-scale secondary ion mass spectrometry (nanoSIMS) is a powerful approach to quantify assimilation rates of elements such as C and N into individual microbial cells. Here, we use mathematical modeling to investigate how the derived rate estimates depend on the model used to describe substrate assimilation by a cell during a SIP incubation. We show that the most commonly used model, which is based on the simplifying assumptions of linearly increasing biomass of individual cells over time and no cell division, can yield underestimated assimilation rates when compared to rates derived from a model that accounts for cell division. This difference occurs because the isotopic labeling of a dividing cell increases more rapidly over time compared to a non-dividing cell and becomes more pronounced as the labeling increases above a threshold value that depends on the cell cycle stage of the measured cell. Based on the modeling results, we present formulae for estimating assimilation rates in cells and discuss their underlying assumptions, conditions of applicability, and implications for the interpretation of intercellular variability in assimilation rates derived from nanoSIMS data, including the impacts of storage inclusion metabolism. We offer the formulae as a Matlab script to facilitate rapid data evaluation by nanoSIMS users.

14.
Conserv Physiol ; 9(1): coab062, 2021.
Article in English | MEDLINE | ID: mdl-34394942

ABSTRACT

Phytoplankton growth depends not only upon external factors that are not strongly altered by the presence of phytoplankton, such as temperature, but also upon factors that are strongly influenced by activity of phytoplankton, including photosynthetically active radiation, and the availability of the macronutrients carbon, nitrogen, phosphorus and, for some, silicate. Since phytoplankton therefore modify, and to an extent create, their own habitats, established phytoplankton communities can show resistance and resilience to change, including managed changes in nutrient regimes. Phytoplankton blooms and community structures can be predicted from the overall biogeochemical setting and inputs, but restorations may be influenced by the physiological responses of established phytoplankton taxa to nutrient inputs, temperature, second-order changes in illumination and nutrient recycling. In this review we discuss the contributions of phytoplankton ecophysiology to biogeochemical hysteresis and possible effects on community composition in the face of management, conservation or remediation plans.

15.
Front Microbiol ; 12: 617802, 2021.
Article in English | MEDLINE | ID: mdl-33897635

ABSTRACT

Marine diazotrophs are a diverse group with key roles in biogeochemical fluxes linked to primary productivity. The unicellular, diazotrophic cyanobacterium Cyanothece is widely found in coastal, subtropical oceans. We analyze the consequences of diazotrophy on growth efficiency, compared to NO3 --supported growth in Cyanothece, to understand how cells cope with N2-fixation when they also have to face carbon limitation, which may transiently affect populations in coastal environments or during blooms of phytoplankton communities. When grown in obligate diazotrophy, cells face the double burden of a more ATP-demanding N-acquisition mode and additional metabolic losses imposed by the transient storage of reducing potential as carbohydrate, compared to a hypothetical N2 assimilation directly driven by photosynthetic electron transport. Further, this energetic burden imposed by N2-fixation could not be alleviated, despite the high irradiance level within the cultures, because photosynthesis was limited by the availability of dissolved inorganic carbon (DIC), and possibly by a constrained capacity for carbon storage. DIC limitation exacerbates the costs on growth imposed by nitrogen fixation. Therefore, the competitive efficiency of diazotrophs could be hindered in areas with insufficient renewal of dissolved gases and/or with intense phytoplankton biomass that both decrease available light energy and draw the DIC level down.

16.
Mar Pollut Bull ; 163: 112008, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33461076

ABSTRACT

Diatom responses to ocean acidification have been documented with variable and controversial results. We grew the coastal diatom Thalassiosira weissflogii under 410 (LC, pH 8.13) vs 1000 µatm (HC, pH 7.83) pCO2 and at different levels of light (80, 140, 220 µmol photons m-2 s-1), and found that light level alters physiological responses to OA. CO2 concentrating mechanisms (CCMs) were down-regulated in the HC-grown cells across all the light levels, as reflected by lowered activity of the periplasmic carbonic anhydrase and decreased photosynthetic affinity for CO2 or dissolved inorganic carbon. The specific growth rate was, however, enhanced significantly by 9.2% only at the limiting low light level. These results indicate that rather than CO2 "fertilization", the energy saved from down-regulation of CCMs promoted the growth rate of the diatom when light availability is low, in parallel with enhanced respiration under OA to cope with the acidic stress by providing extra energy.


Subject(s)
Diatoms , Carbon Dioxide , Hydrogen-Ion Concentration , Oceans and Seas , Photosynthesis , Respiration , Seawater
17.
J Theor Biol ; 513: 110580, 2021 03 21.
Article in English | MEDLINE | ID: mdl-33444625

ABSTRACT

Oxygenic photoautotrophs are, paradoxically, subject to photoinhibition of their photosynthetic apparatus, in particular one of its major components, the Photosystem II (PSII). Photoinhibition is generalized across species, light conditions and habitats, imposing substantial metabolic costs that lower photosynthetic productivity and constrain the niches of photoautotrophy. As a process driven by light reaching PSII, light attenuation in optically thick samples influences both the actual extent, and the detection, of photoinhibition. Chlorophyll fluorescence is widely used to measure photoinhibition, but fluorescence-based parameters are affected by light attenuation of both downwelling incident radiation traversing the sample to reach PSII, and emitted fluorescence upwelling through the sample. We used modelling, experimental manipulation of within-sample light attenuation, and meta-analysis of published data, to show substantial, differential effects of light attenuation and depth-integration of emitted fluorescence upon measurements of photoinhibition. Numerical simulations and experimental manipulation of light attenuation indicated that PSII photoinactivation tracked using chlorophyll fluorescence can appear to be over three times lower than the inherent cellular susceptibility to photoinactivation, in optically-dense samples such as leaves or biofilms. The meta-analysis of published data showed that this general trend was unknowingly present in the literature, revealing an overall difference of more than five times between optically thick leaves and optically thin cell suspensions. Although fluorescence-based parameters may provide ecophysiologically relevant information for characterizing the sample as a whole, light attenuation and depth integration can vary between samples independently of their intrinsic physiology. They should be used with caution when aiming to quantify in absolute terms inherent photoinhibition-related parameters in optically thick samples.


Subject(s)
Chlorophyll , Computer Simulation , Plant Leaves , Fluorescence , Light , Photosynthesis , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Plant Leaves/radiation effects
18.
PLoS One ; 15(12): e0244252, 2020.
Article in English | MEDLINE | ID: mdl-33370327

ABSTRACT

Marine phytoplankton, and in particular diatoms, are responsible for almost half of all primary production on Earth. Diatom species thrive from polar to tropical waters and across light environments that are highly complex to relatively benign, and so have evolved highly divergent strategies for regulating light capture and utilization. It is increasingly well established that diatoms have achieved such successful ecosystem dominance by regulating excitation energy available for generating photosynthetic energy via highly flexible light harvesting strategies. However, how different light harvesting strategies and downstream pathways for oxygen production and consumption interact to balance excitation pressure remains unknown. We therefore examined the responses of three diatom taxa adapted to inherently different light climates (estuarine Thalassioisira weissflogii, coastal Thalassiosira pseudonana and oceanic Thalassiosira oceanica) during transient shifts from a moderate to high growth irradiance (85 to 1200 µmol photons m-2 s-1). Transient high light exposure caused T. weissflogii to rapidly downregulate PSII with substantial nonphotochemical quenching, protecting PSII from inactivation or damage, and obviating the need for induction of O2 consuming (light-dependent respiration, LDR) pathways. In contrast, T. oceanica retained high excitation pressure on PSII, but with little change in RCII photochemical turnover, thereby requiring moderate repair activity and greater reliance on LDR. T. pseudonana exhibited an intermediate response compared to the other two diatom species, exhibiting some downregulation and inactivation of PSII, but high repair of PSII and induction of reversible PSII nonphotochemical quenching, with some LDR. Together, these data demonstrate a range of strategies for balancing light harvesting and utilization across diatom species, which reflect their adaptation to sustain photosynthesis under environments with inherently different light regimes.


Subject(s)
Adaptation, Physiological , Diatoms/physiology , Ecosystem , Oxygen/metabolism , Photosynthesis , Photosystem II Protein Complex/metabolism , Light
19.
Mar Environ Res ; 160: 104965, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32291249

ABSTRACT

Phytoplankton in the upper oceans are exposed to changing light levels due to mixing, diurnal solar cycles and weather conditions. Consequently, effects of ocean acidification are superimposed upon responses to variable light levels. We therefore grew a model diatom Thalassiosira pseudonana under either constant or variable light but at the same daily photon dose, with current low (400 µatm, LC) and future high CO2 (1000 µatm, HC) treatments. Variable light, compared with the constant light regime, decreased the growth rate, Chl a, Chl c, and carotenoid contents under both LC and HC conditions. Cells grown under variable light appeared more tolerant of high light as indicated by higher maximum relative electron transport rate and saturation light. Light variation interacted with high CO2/lowered pH to decrease the carbon fixation rate, but increased particulate organic carbon (POC) and particularly nitrogen (PON) per cell, which drove a decrease in C/N ratio, reflecting changes in the efficiency of energy transfer from photo-chemistry to net biomass production. Our results imply that elevated pCO2 under varying light conditions can lead to less primary productivity but more PON per biomass of the diatom, which might improve the food quality of diatoms and thereby influence biogeochemical nitrogen cycles.


Subject(s)
Diatoms , Nitrogen , Carbon Dioxide , Diatoms/growth & development , Hydrogen-Ion Concentration , Oceans and Seas , Photosynthesis , Seawater
20.
PLoS One ; 14(10): e0224489, 2019.
Article in English | MEDLINE | ID: mdl-31652286

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0195705.].

SELECTION OF CITATIONS
SEARCH DETAIL