Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Ann Clin Lab Sci ; 50(5): 611-624, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33067207

ABSTRACT

OBJECTIVE: Patients with epithelial ovarian cancers experience the highest fatality rates among all gynecological malignancies which require development of novel treatment strategies. Tumor cell necrosis was previously reported in a number of cancer cell lines following treatment with a p53-derived anti-cancer peptide called PNC-27. This peptide induces necrosis by transmembrane pore formation with HDM-2 protein that is expressed in the cancer cell membrane. We aimed to extend these studies further by investigating expression of membrane HDM-2 protein in ovarian cancer as it relates to susceptibility to PNC-27. PROCEDURES: Herein, we measured HDM-2 membrane expression in two ovarian cancer cell lines (SKOV-3 and OVCAR-3) and a non-transformed control cell line (HUVEC) by flow cytometric and western blot analysis. Immunofluorescence was used to visualize colocalization of PNC-27 with membrane HDM-2. Treatment effects with PNC-27 and control peptide were assessed using a MTT cell proliferation assay while direct cytotoxicity was measured by lactate dehydrogenase (LDH) release and induction of apoptotic markers; annexin V and caspase-3. RESULTS: HDM-2 protein was highly expressed and frequently detected in the membranes of SKOV-3 and OVCAR-3 cells; a prominent 47.6 kDa HDM-2 plasma membrane isoform was present in both cell lines whereas 25, 29, and 30 kDa isoforms were preferentially expressed in OVCAR-3. Notably, PNC-27 colocalized with HDM-2 in the membranes of both cancer cell lines that resulted in rapid cellular necrosis. In contrast, no PNC-27 colocalization and cytotoxicity was observed with non-transformed HUVEC demonstrating minimal expression of membrane HDM-2. CONCLUSIONS: Our results suggest that HDM-2 is highly expressed in the membranes of these ovarian cancer cell lines and colocalizes with PNC-27. We therefore conclude that the association of PNC-27 with preferentially expressed membrane HDM-2 isoforms results in the proposed model for the formation of transmembrane pores and epithelial ovarian cancer tumor cell necrosis, as previously described in a number of solid tissue and hematologic malignancies.


Subject(s)
Ovarian Neoplasms/drug therapy , Proto-Oncogene Proteins c-mdm2/genetics , Tumor Suppressor Protein p53/pharmacology , Annexin A5/analysis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma, Ovarian Epithelial/metabolism , Caspase 3/analysis , Cell Line, Tumor , Cell Membrane/metabolism , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Female , Humans , L-Lactate Dehydrogenase/analysis , Necrosis/metabolism , Ovarian Neoplasms/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL