Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 793
Filter
1.
bioRxiv ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38645151

ABSTRACT

We created the c.1286C>G stop-gain mutation found in a family with primary ovarian insufficiency (POI) at age 30 years. The Eif4enif1 C57/Bl6 transgenic mouse model contained a floxed exon 10-19 cassette with a conditional knock-in cassette containing the c.1286C>G stop-gain mutation in exon 10. The hybrid offspring of CMV- Cre mice with Eif4enif1 WT/flx mice were designated Eif4enif1 WT/ Δ for simplicity. A subset of female heterozygotes ( Eif4enif1 WT/ Δ ) had no litters. In those with litters, the final litter was earlier (5.4±2.6 vs. 10.5±0.7 months; p=0.02). Heterozygous breeding pair ( Eif4enif1 WT/ Δ x Eif4enif1 WT/ Δ ) litter size was 60% of WT litter size (3.9±2.0 vs. 6.5±3.0 pups/litter; p <0.001). The genotypes were 35% Eif4enif1 WT/flx and 65% Eif4enif1 WT/ Δ , with no homozygotes. Homozygote embryos did not develop beyond the 4-8 cell stage. The number of follicles in ovaries from Eif4enif1 WT/ Δ mice was lower starting at the primordial (499±290 vs. 1445±381) and primary follicle stage (1069±346 vs. 1450±193) on day 10 (p<0.05). The preantral follicle number was lower starting on day 21 (213±86 vs. 522±227; p<0.01). Examination of ribosome protected mRNAs (RPR) demonstrated altered mRNA expression. The Eif4enif1 stop-gain mice replicate the POI phenotype in women. The unique mouse model provides a platform to study regulation of protein translation across oocyte and embryo development in mammals.

2.
Neurophotonics ; 11(2): 024207, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38577628

ABSTRACT

Significance: Genetically encoded calcium ion (Ca2+) indicators (GECIs) are powerful tools for monitoring intracellular Ca2+ concentration changes in living cells and model organisms. In particular, GECIs have found particular utility for monitoring the transient increase of Ca2+ concentration that is associated with the neuronal action potential. However, the palette of highly optimized GECIs for imaging of neuronal activity remains relatively limited. Expanding the selection of available GECIs to include new colors and distinct photophysical properties could create new opportunities for in vitro and in vivo fluorescence imaging of neuronal activity. In particular, blue-shifted variants of GECIs are expected to have enhanced two-photon brightness, which would facilitate multiphoton microscopy. Aim: We describe the development and applications of T-GECO1-a high-performance blue-shifted GECI based on the Clavularia sp.-derived mTFP1. Approach: We use protein engineering and extensive directed evolution to develop T-GECO1. We characterize the purified protein and assess its performance in vitro using one-photon excitation in cultured rat hippocampal neurons, in vivo using one-photon excitation fiber photometry in mice, and ex vivo using two-photon Ca2+ imaging in hippocampal slices. Results: The Ca2+-bound state of T-GECO1 has an excitation peak maximum of 468 nm, an emission peak maximum of 500 nm, an extinction coefficient of 49,300 M-1 cm-1, a quantum yield of 0.83, and two-photon brightness approximately double that of EGFP. The Ca2+-dependent fluorescence increase is 15-fold, and the apparent Kd for Ca2+ is 82 nM. With two-photon excitation conditions at 850 nm, T-GECO1 consistently enabled the detection of action potentials with higher signal-to-noise (SNR) than a late generation GCaMP variant. Conclusions: T-GECO1 is a high-performance blue-shifted GECI that, under two-photon excitation conditions, provides advantages relative to late generation GCaMP variants.

3.
ACS Cent Sci ; 10(2): 402-416, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38435524

ABSTRACT

l-Lactate is a monocarboxylate produced during the process of cellular glycolysis and has long generally been considered a waste product. However, studies in recent decades have provided new perspectives on the physiological roles of l-lactate as a major energy substrate and a signaling molecule. To enable further investigations of the physiological roles of l-lactate, we have developed a series of high-performance (ΔF/F = 15 to 30 in vitro), intensiometric, genetically encoded green fluorescent protein (GFP)-based intracellular l-lactate biosensors with a range of affinities. We evaluated these biosensors in cultured cells and demonstrated their application in an ex vivo preparation of Drosophila brain tissue. Using these biosensors, we were able to detect glycolytic oscillations, which we analyzed and mathematically modeled.

4.
Nat Methods ; 21(4): 666-672, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38459384

ABSTRACT

We developed a system for optogenetic release of single molecules in cells. We confined soluble and transmembrane proteins to the Golgi apparatus via a photocleavable protein and released them by short pulses of light. Our method allows for a light dose-dependent delivery of functional proteins to the cytosol and plasma membrane in amounts compatible with single-molecule imaging, greatly simplifying access to single-molecule microscopy of any protein in live cells. We were able to reconstitute ion conductance by delivering BK and LRRC8/volume-regulated anion channels to the plasma membrane. Finally we were able to induce NF-kB signaling in T lymphoblasts stimulated by interleukin-1 by controlled release of a signaling protein that had been knocked out. We observed light-induced formation of functional inflammatory signaling complexes that triggered phosphorylation of the inhibitor of nuclear factor kappa-B kinase only in activated cells. We thus developed an optogenetic method for the reconstitution and investigation of cellular function at the single-molecule level.


Subject(s)
Optogenetics , Signal Transduction , Delayed-Action Preparations , NF-kappa B/metabolism , Phosphorylation
5.
J Hosp Med ; 19(5): 368-376, 2024 May.
Article in English | MEDLINE | ID: mdl-38383949

ABSTRACT

OBJECTIVES: Racial and ethnic differences in drug testing have been described among adults and newborns. Less is known regarding testing patterns among children and adolescents. We sought to describe the association between race and ethnicity and drug testing at US children's hospitals. We hypothesized that non-Hispanic White children undergo drug testing less often than children from other groups. METHODS: We conducted a retrospective cohort study of emergency department (ED)-only encounters and hospitalizations for children diagnosed with a condition for which drug testing may be indicated (abuse or neglect, burns, malnutrition, head injury, vomiting, altered mental status or syncope, psychiatric, self-harm, and seizure) at 41 children's hospitals participating in the Pediatric Health Information System during 2018 and 2021. We compared drug testing rates among (non-Hispanic) Asian, (non-Hispanic) Black, Hispanic, and (non-Hispanic) White children overall, by condition and patient cohort (ED-only vs. hospitalized) and across hospitals. RESULTS: Among 920,755 encounters, 13.6% underwent drug testing. Black children were tested at significantly higher rates overall (adjusted odds ratio [aOR]: 1.18; 1.05-1.33) than White children. Black-White testing differences were observed in the hospitalized cohort (aOR: 1.42; 1.18-1.69) but not among ED-only encounters (aOR: 1.07; 0.92-1.26). Asian, Hispanic, and White children underwent testing at similar rates. Testing varied by diagnosis and across hospitals. CONCLUSIONS: Hospitalized Black children were more likely than White children to undergo drug testing at US children's hospitals, though this varied by diagnosis and hospital. Our results support efforts to better understand and address healthcare disparities, including the contributions of implicit bias and structural racism.


Subject(s)
Ethnicity , Hospitals, Pediatric , Humans , Retrospective Studies , Child , Male , Female , Adolescent , Child, Preschool , Ethnicity/statistics & numerical data , Racial Groups , Substance Abuse Detection/statistics & numerical data , United States , Emergency Service, Hospital/statistics & numerical data , Hospitalization/statistics & numerical data , Infant , Substance-Related Disorders/diagnosis , Substance-Related Disorders/ethnology , Healthcare Disparities/ethnology
6.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38328224

ABSTRACT

The goal of this protocol is to enable better characterisation of multiphoton microscopy hardware across a large user base. The scope of this protocol is purposefully limited to focus on hardware, touching on software and data analysis routines only where relevant. The intended audiences are scientists using and building multiphoton microscopes in their laboratories. The goal is that any scientist, not only those with optical expertise, can test whether their multiphoton microscope is performing well and producing consistent data over the lifetime of their system.

7.
Glob Chang Biol ; 30(1): e17090, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273483

ABSTRACT

Microalgae are the main source of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), essential for the healthy development of most marine and terrestrial fauna including humans. Inverse correlations of algal EPA and DHA proportions (% of total fatty acids) with temperature have led to suggestions of a warming-induced decline in the global production of these biomolecules and an enhanced importance of high latitude organisms for their provision. The cold Arctic Ocean is a potential hotspot of EPA and DHA production, but consequences of global warming are unknown. Here, we combine a full-seasonal EPA and DHA dataset from the Central Arctic Ocean (CAO), with results from 13 previous field studies and 32 cultured algal strains to examine five potential climate change effects; ice algae loss, community shifts, increase in light, nutrients, and temperature. The algal EPA and DHA proportions were lower in the ice-covered CAO than in warmer peripheral shelf seas, which indicates that the paradigm of an inverse correlation of EPA and DHA proportions with temperature may not hold in the Arctic. We found no systematic differences in the summed EPA and DHA proportions of sea ice versus pelagic algae, and in diatoms versus non-diatoms. Overall, the algal EPA and DHA proportions varied up to four-fold seasonally and 10-fold regionally, pointing to strong light and nutrient limitations in the CAO. Where these limitations ease in a warming Arctic, EPA and DHA proportions are likely to increase alongside increasing primary production, with nutritional benefits for a non-ice-associated food web.


Subject(s)
Diatoms , Fatty Acids, Omega-3 , Humans , Ice Cover , Oceans and Seas , Arctic Regions , Fatty Acids
8.
Nihon Yakurigaku Zasshi ; 159(1): 25-30, 2024.
Article in Japanese | MEDLINE | ID: mdl-38171834

ABSTRACT

Fluorescent imaging sensors based on genetically-encoded and biocompatible proteins have become important tools in medical and biological research due to their high spatiotemporal resolution and ease of use. Protein engineering has led to the development of imaging sensors that visualize changes in the concentration of various target molecules/ions, such as calcium ions. In addition, the development of chemigenetic sensors based on complexes of proteins and synthetic molecules has been gaining momentum in recent years. In this article, the latest research trends in the development of these imaging sensors are introduced, with focus on the sensors developed by our group.


Subject(s)
Fluorescent Dyes , Ions , Luminescent Proteins
9.
Res Pract Thromb Haemost ; 8(1): 102298, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38292352

ABSTRACT

A State of the Art lecture titled "Immunothrombosis in Neurovascular Diseases" was presented at the International Society on Thrombosis and Haemostasis Congress in 2023. Despite significant clinical advancements in stroke therapy, stroke remains a prominent contributor to both mortality and disability worldwide. Brain injury resulting from an ischemic stroke is a dynamic process that unfolds over time. Initially, an infarct core forms due to the abrupt and substantial blockage of blood flow. In the subsequent hours to days, the surrounding tissue undergoes gradual deterioration, primarily driven by sustained hypoperfusion, programmed cell death, and inflammation. While anti-inflammatory strategies have proven highly effective in experimental models of stroke, their successful translation to clinical use has proven challenging. To overcome this translational hurdle, a better understanding of the distinct immune response driving ischemic stroke brain injury is needed. In this review article, we give an overview of current knowledge regarding the immune response in ischemic stroke and the contribution of immunothrombosis to this process. We discuss therapeutic approaches to overcome detrimental immunothrombosis in ischemic stroke and how these can be extrapolated to other neurovascular diseases, such as Alzheimer's disease and multiple sclerosis. Finally, we summarize relevant new data on this topic presented during the 2023 International Society on Thrombosis and Haemostasis Congress.

10.
Intern Med J ; 54(1): 35-42, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38165070

ABSTRACT

BACKGROUND: Surgical management of refractory focal epilepsy requires preoperative localisation of the epileptogenic zone (EZ). To augment noninvasive studies, stereoelectroencephalography (SEEG) is being increasingly adopted as a form of intracranial monitoring. AIMS: This study aimed to determine the rate of complications for patients undergoing SEEG and to report the success of SEEG with regard to EZ detection and seizure outcome following definitive surgery. METHODS: A retrospective cohort design investigated all cases of SEEG at our institution. Surgical, anaesthetic and medical complications with subsequent epilepsy surgery and seizure outcome data were extracted from medical records. Multivariate logistic regression was used to investigate the relationship between both the number of electrodes per patient and the duration of SEEG recording with the rate of complications. RESULTS: Sixty-four patients with 66 implantations were included. Headache was the most common complication (n = 54, 82%). There were no major surgical or medical complications. Two anaesthetic complications occurred. EZ localisation was successful in 63 cases (95%). Curative intent surgery was performed in 39 patients (59%) and 23 patients achieved an Engel class I outcome (59% of those undergoing surgery). The number of electrodes and duration of recording were not associated with complications. CONCLUSIONS: No patients in our series experienced major surgical or medical complications and we have highlighted the challenges associated with neuroanaesthesia in SEEG. Our complication rates and seizure outcomes are equivalent to published literature indicating that this technique can be successfully established in newer centres using careful case selection. Standardised reporting of SEEG complications should be adopted.


Subject(s)
Anesthetics , Drug Resistant Epilepsy , Humans , Electroencephalography/adverse effects , Electroencephalography/methods , Retrospective Studies , Treatment Outcome , Australia , Drug Resistant Epilepsy/surgery , Drug Resistant Epilepsy/diagnosis , Seizures/epidemiology , Seizures/surgery
11.
J Thromb Haemost ; 22(2): 311-314, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37940049

Subject(s)
Aging , Blood , Humans
12.
Blood ; 143(5): 444-455, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37883802

ABSTRACT

ABSTRACT: Transglutaminase factor XIII (FXIII) is essential for hemostasis, wound healing, and pregnancy maintenance. Plasma FXIII is composed of A and B subunit dimers synthesized in cells of hematopoietic origin and hepatocytes, respectively. The subunits associate tightly in circulation as FXIII-A2B2. FXIII-B2 stabilizes the (pro)active site-containing FXIII-A subunits. Interestingly, people with genetic FXIII-A deficiency have decreased FXIII-B2, and therapeutic infusion of recombinant FXIII-A2 (rFXIII-A2) increases FXIII-B2, suggesting FXIII-A regulates FXIII-B secretion, production, and/or clearance. We analyzed humans and mice with genetic FXIII-A deficiency and developed a mouse model of rFXIII-A2 infusion to define mechanisms mediating plasma FXIII-B levels. Like humans with FXIII-A deficiency, mice with genetic FXIII-A deficiency had reduced circulating FXIII-B2, and infusion of FXIII-A2 increased FXIII-B2. FXIII-A-deficient mice had normal hepatic function and did not store FXIII-B in liver, indicating FXIII-A does not mediate FXIII-B secretion. Transcriptional analysis and polysome profiling indicated similar F13b levels and ribosome occupancy in FXIII-A-sufficient and -deficient mice and in FXIII-A-deficient mice infused with rFXIII-A2, indicating FXIII-A does not induce de novo FXIII-B synthesis. Unexpectedly, pharmacokinetic/pharmacodynamic modeling of FXIII-B antigen after rFXIII-A2 infusion in humans and mice suggested FXIII-A2 slows FXIII-B2 loss from plasma. Accordingly, comparison of free FXIII-B2 vs FXIII-A2-complexed FXIII-B2 (FXIII-A2B2) infused into mice revealed faster clearance of free FXIII-B2. These data show FXIII-A2 prevents FXIII-B2 loss from circulation and establish the mechanism underlying FXIII-B2 behavior in FXIII-A deficiency and during rFXIII-A2 therapy. Our findings reveal a unique, reciprocal relationship between independently synthesized subunits that mediate an essential hemostatic protein in circulation. This trial was registered at www.ClinicalTrials.com as #NCT00978380.


Subject(s)
Factor XIII Deficiency , Animals , Female , Humans , Mice , Pregnancy , Blood Coagulation Tests , Factor XIII/metabolism , Factor XIII Deficiency/genetics , Factor XIIIa/genetics , Hemostasis , Hemostatics/blood
13.
Circ Res ; 134(2): 143-161, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38156445

ABSTRACT

BACKGROUND: Single-nucleotide polymorphisms linked with the rs1474868 T allele (MFN2 [mitofusin-2] T/T) in the human mitochondrial fusion protein MFN2 gene are associated with reduced platelet MFN2 RNA expression and platelet counts. This study investigates the impact of MFN2 on megakaryocyte and platelet biology. METHODS: Mice with megakaryocyte/platelet deletion of Mfn2 (Mfn2-/- [Mfn2 conditional knockout]) were generated using Pf4-Cre crossed with floxed Mfn2 mice. Human megakaryocytes were generated from cord blood and platelets isolated from healthy subjects genotyped for rs1474868. Ex vivo approaches assessed mitochondrial morphology, function, and platelet activation responses. In vivo measurements included endogenous/transfused platelet life span, tail bleed time, transient middle cerebral artery occlusion, and pulmonary vascular permeability/hemorrhage following lipopolysaccharide-induced acute lung injury. RESULTS: Mitochondria was more fragmented in megakaryocytes derived from Mfn2-/- mice and from human cord blood with MFN2 T/T genotype compared with control megakaryocytes. Human resting platelets of MFN2 T/T genotype had reduced MFN2 protein, diminished mitochondrial membrane potential, and an increased rate of phosphatidylserine exposure during ex vivo culture. Platelet counts and platelet life span were reduced in Mfn2-/- mice accompanied by an increased rate of phosphatidylserine exposure in resting platelets, especially aged platelets, during ex vivo culture. Mfn2-/- also decreased platelet mitochondrial membrane potential (basal) and activated mitochondrial oxygen consumption rate, reactive oxygen species generation, calcium flux, platelet-neutrophil aggregate formation, and phosphatidylserine exposure following dual agonist activation. Ultimately, Mfn2-/- mice showed prolonged tail bleed times, decreased ischemic stroke infarct size after cerebral ischemia-reperfusion, and exacerbated pulmonary inflammatory hemorrhage following lipopolysaccharide-induced acute lung injury. Analysis of MFN2 SNPs in the iSPAAR study (Identification of SNPs Predisposing to Altered ALI Risk) identified a significant association between MFN2 and 28-day mortality in patients with acute respiratory distress syndrome. CONCLUSIONS: Mfn2 preserves mitochondrial phenotypes in megakaryocytes and platelets and influences platelet life span, function, and outcomes of stroke and lung injury.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Aged , Animals , Humans , Mice , Acute Lung Injury/metabolism , Blood Platelets/metabolism , Hemorrhage/metabolism , Mitochondria/metabolism , Phosphatidylserines/metabolism
14.
Biochemistry ; 63(1): 171-180, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38113455

ABSTRACT

Genetically encoded sensors enable quantitative imaging of analytes in live cells. Sensors are commonly constructed by combining ligand-binding domains with one or more sensitized fluorescent protein (FP) domains. Sensors based on a single FP can be susceptible to artifacts caused by changes in sensor levels or distribution in vivo. To develop intensiometric sensors with the capacity for ratiometric quantification, dual-FP Matryoshka sensors were generated by using a single cassette with a large Stokes shift (LSS) reference FP nested within the reporter FP (cpEGFP). Here, we present a genetically encoded calcium sensor that employs green apple (GA) Matryoshka technology by incorporating a newly designed red LSSmApple fluorophore. LSSmApple matures faster and provides an optimized excitation spectrum overlap with cpEGFP, allowing for monochromatic coexcitation with blue light. The LSS of LSSmApple results in improved emission spectrum separation from cpEGFP, thereby minimizing fluorophore bleed-through and facilitating imaging using standard dichroic and red FP (RFP) emission filters. We developed an image analysis pipeline for yeast (Saccharomyces cerevisiae) timelapse imaging that utilizes LSSmApple to segment and track cells for high-throughput quantitative analysis. In summary, we engineered a new FP, constructed a genetically encoded calcium indicator (GA-MatryoshCaMP6s), and performed calcium imaging in yeast as a demonstration.


Subject(s)
Calcium , Saccharomyces cerevisiae , Luminescent Proteins/chemistry , Calcium/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Red Fluorescent Protein , Fluorescent Dyes
15.
CMAJ Open ; 11(6): E1164-E1180, 2023.
Article in English | MEDLINE | ID: mdl-38114259

ABSTRACT

BACKGROUND: Equitable access to surgical care has clinical and policy implications. We assess the association between social disadvantage and wait times for elective surgical procedures in Ontario. METHODS: We conducted a cross-sectional analysis using administrative data sets of adults receiving nonurgent inguinal hernia repair, cholecystectomy, hip arthroplasty, knee arthroplasty, arthroscopy, benign uterine surgery and cataract surgery from April 2013 to December 2019. We assessed the relation between exceeding target wait times and the highest versus lowest quintile of marginalization dimensions by use of generalized estimating equations logistic regression. RESULTS: Of the 1 385 673 procedures included, 174 633 (12.6%) exceeded the target wait time. Adjusted analysis for cataract surgery found significantly increased odds of exceeding wait times for residential instability (adjusted odd ratio [OR] 1.16, 95% confidence interval [CI] 1.11-1.21) and recent immigration (adjusted OR 1.12, 95% CI 1.07-1.18). The highest deprivation quintile was associated with 18% (adjusted OR 1.18, 95% CI 1.12-1.24) and 20% (adjusted OR 1.20, 95% CI 1.12-1.28) increased odds of exceeding wait times for knee and hip arthroplasty, respectively. Residence in areas where higher proportions of residents self-identify as being part of a visible minority group was independently associated with reduced odds of exceeding target wait times for hip arthroplasty (adjusted OR 0.82, 95% CI 0.75-0.91), cholecystectomy (adjusted OR 0.68, 95% CI 0.59-0.79) and hernia repair (adjusted OR 0.65, 95% CI 0.56-0.77) with an opposite effect in benign uterine surgery (adjusted OR 1.28, 95% CI 1.17-1.40). INTERPRETATION: Social disadvantage had a small and inconsistent impact on receiving care within wait time targets. Future research should consider these differences as they relate to resource distribution and the organization of clinical service delivery.

16.
Nat Commun ; 14(1): 6598, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891202

ABSTRACT

L-Lactate is increasingly appreciated as a key metabolite and signaling molecule in mammals. However, investigations of the inter- and intra-cellular dynamics of L-lactate are currently hampered by the limited selection and performance of L-lactate-specific genetically encoded biosensors. Here we now report a spectrally and functionally orthogonal pair of high-performance genetically encoded biosensors: a green fluorescent extracellular L-lactate biosensor, designated eLACCO2.1, and a red fluorescent intracellular L-lactate biosensor, designated R-iLACCO1. eLACCO2.1 exhibits excellent membrane localization and robust fluorescence response. To the best of our knowledge, R-iLACCO1 and its affinity variants exhibit larger fluorescence responses than any previously reported intracellular L-lactate biosensor. We demonstrate spectrally and spatially multiplexed imaging of L-lactate dynamics by coexpression of eLACCO2.1 and R-iLACCO1 in cultured cells, and in vivo imaging of extracellular and intracellular L-lactate dynamics in mice.


Subject(s)
Biosensing Techniques , Lactic Acid , Mice , Animals , Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer , Cells, Cultured , Optical Imaging , Mammals
17.
bioRxiv ; 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37905143

ABSTRACT

Significance: Genetically encoded calcium ion (Ca2+) indicators (GECIs) are powerful tools for monitoring intracellular Ca2+ concentration changes in living cells and model organisms. In particular, GECIs have found particular utility for monitoring the transient increase of Ca2+ concentration that is associated with the neuronal action potential. However, the palette of highly optimized GECIs for imaging of neuronal activity remains relatively limited. Expanding the selection of available GECIs to include new colors and distinct photophysical properties could create new opportunities for in vitro and in vivo fluorescence imaging of neuronal activity. In particular, blue-shifted variants of GECIs are expected to have enhanced two-photon brightness, which would facilitate multiphoton microscopy. Aim: We describe the development and applications of T-GECO1 - a high-performance blue-shifted GECI based on the Clavularia sp.-derived mTFP1. Approach: We used protein engineering and extensive directed evolution to develop T-GECO1. We characterize the purified protein and assess its performance in vitro using one-photon excitation in cultured rat hippocampal neurons, in vivo using one-photon excitation fiber photometry in mice, and ex vivo using two-photon Ca2+ imaging in hippocampal slices. Results: The Ca2+-bound state of T-GECO1 has an excitation peak maximum of 468 nm, an emission peak maximum of 500 nm, an extinction coefficient of 49,300 M-1cm-1, a quantum yield of 0.83, and two-photon brightness approximately double that of EGFP. The Ca2+-dependent fluorescence increase is 15-fold and the apparent Kd for Ca2+ is 82 nM. With two-photon excitation conditions at 850 nm, T-GECO1 consistently enabled detection of action potentials with higher signal-to-noise (SNR) than a late generation GCaMP variant. Conclusion: T-GECO1 is a high performance blue-shifted GECI that, under two-photon excitation conditions, provides advantages relative to late generation GCaMP variants.

18.
Clin Transl Sci ; 16(12): 2700-2708, 2023 12.
Article in English | MEDLINE | ID: mdl-37877594

ABSTRACT

This study explored the acceptability of a novel pharmacist-led pharmacogenetics (PGx) screening program among patients with cancer and healthcare professionals (HCPs) taking part in a multicenter clinical trial of PGx testing (PACIFIC-PGx ANZCTR:12621000251820). Medical oncologists, oncology pharmacists, and patients with cancer from across four sites (metropolitan/regional), took part in an observational, cross-sectional survey. Participants were recruited from the multicenter trial. Two study-specific surveys were developed to inform implementation strategies for scaled and sustainable translation into routine clinical care: one consisting of 21 questions targeting HCPs and one consisting of 17 questions targeting patients. Responses were collected from 24 HCPs and 288 patients. The 5-to-7-day PGx results turnaround time was acceptable to HCP (100%) and patients (69%). Most HCPs (92%) indicated that it was appropriate for the PGx clinical pharmacist to provide results to patients. Patients reported equal preference for receiving PGx results from a doctor/pharmacist. Patients and HCPs highly rated the pharmacist-led PGx service. HCPs were overall accepting of the program, with the majority (96%) willing to offer PGx testing to their patients beyond the trial. HCPs identified that lack of financial reimbursements (62%) and lack of infrastructure (38%) were the main reasons likely to prevent/slow the implementation of PGx screening program into routine clinical care. Survey data have shown overall acceptability from patients and HCPs participating in the PGx Program. Barriers to implementation of PGx testing in routine care have been identified, providing opportunity to develop targeted implementation strategies for scaled translation into routine practice.


Subject(s)
Dihydropyrimidine Dehydrogenase Deficiency , Neoplasms , Pharmacogenomic Testing , Humans , Cross-Sectional Studies , Health Personnel , Patient Acceptance of Health Care , Pharmacogenetics , Dihydropyrimidine Dehydrogenase Deficiency/diagnosis , Dihydropyrimidine Dehydrogenase Deficiency/genetics
19.
Blood ; 142(17): 1409-1410, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37883112
20.
RSC Adv ; 13(42): 29584-29593, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37822650

ABSTRACT

The development of a new materials platform capable of sustaining the functionality of proteinous sensor molecules over an extended period without being affected by biological contaminants in living systems, such as proteases, is highly demanded. In this study, our primary focus was on fabricating new core-shell fibremats using unique polymer materials, capable of functionalizing encapsulated sensor proteins while resisting the effects of proteases. The core-fibre parts of core-shell fibremats were made using a newly developed post-crosslinkable water-soluble copolymer, poly(2-hydroxypropyl methacrylamide)-co-poly(diacetone methacrylamide), and the bifunctional crosslinking agent, adipic dihydrazide, while the shell layer of the nanofibers was made of nylon 6. Upon encapsulating the lactate-sensor protein eLACCO1.1 at the core-fibre part, the fibremat exhibited a distinct concentration-dependent fluorescence response, with a dynamic range of fluorescence alteration exceeding 1000% over the lactate concentration range of 0 to 100 mM. The estimated dissociation constant from the titration data was comparable to that estimated in a buffer solution. The response remained stable even after 5 cycles and in the presence of proteases. These results indicates that our core-shell fibremat platform could serve as effective immobilizing substrates for various sensor proteins, facilitating continuous and quantitative monitoring of various low-molecular-weight metabolites and catabolites in a variety of biological samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...