Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
Am J Physiol Cell Physiol ; 327(1): C151-C167, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38798270

ABSTRACT

Substance P (SP) is released from sensory nerves in the arteries and heart. It activates neurokinin-1 receptors (NK1Rs) causing vasodilation, immune modulation, and adverse cardiac remodeling. The hypothesis was tested: SP and SP metabolites activate different second messenger signaling pathways. Macrophages, endothelial cells, and fibroblasts metabolized SP to N- and C-terminal metabolites to varying extents. SP 5-11 was the most abundant metabolite followed by SP 1-4, SP 7-11, SP 6-11, SP 3-11, and SP 8-11. In NK1R-expressing human embryonic kidney 293 (HEK293) cells, SP and some C-terminal SP metabolites stimulate the NK1R, promoting the dissociation of several Gα proteins, including Gαs and Gαq from their ßγ subunits. SP increases intracellular calcium concentrations ([Ca]i) and cyclic 3',5'-adenosine monophosphate (cAMP) accumulation with similar -log EC50 values of 8.5 ± 0.3 and 7.8 ± 0.1 M, respectively. N-terminal metabolism of SP by up to five amino acids and C-terminal deamidation of SP produce peptides that retain activity to increase [Ca]i but not to increase cAMP. C-terminal metabolism results in the loss of both activities. Thus, [Ca]i and cAMP signaling are differentially affected by SP metabolism. To assess the role of N-terminal metabolism, SP and SP 6-11 were compared with cAMP-mediated activities in NK1R-expressing 3T3 fibroblasts. SP inhibits nuclear factor κB (NF-κB) activity, cell proliferation, and wound healing and stimulates collagen production. SP 6-11 had little or no activity. Cyclooxygenase-2 (COX-2) expression is increased by SP but not by SP 6-11. Thus, metabolism may select the cellular response to SP by inhibiting or redirecting the second messenger signaling pathway activated by the NK1R.NEW & NOTEWORTHY Endothelial cells, macrophages, and fibroblasts metabolize substance P (SP) to N- and C-terminal metabolites with SP 5-11 as the most abundant metabolite. SP activates neurokinin-1 receptors to increase intracellular calcium and cyclic AMP. In contrast, SP metabolites of N-terminal metabolism and C-terminal deamidation retain the ability to increase calcium but lose the ability to increase cyclic AMP. These new insights indicate that the metabolism of SP directs cellular functions by regulating specific signaling pathways.


Subject(s)
Cyclic AMP , Receptors, Neurokinin-1 , Signal Transduction , Substance P , Substance P/metabolism , Receptors, Neurokinin-1/metabolism , Receptors, Neurokinin-1/agonists , Humans , Cyclic AMP/metabolism , Animals , HEK293 Cells , Mice , Fibroblasts/metabolism , Fibroblasts/drug effects , Calcium/metabolism
2.
Hypertension ; 79(1): 104-114, 2022 01.
Article in English | MEDLINE | ID: mdl-34784723

ABSTRACT

12/15-LO (12/15-lipoxygenase), encoded by Alox15 gene, metabolizes arachidonic acid to 12(S)-HETE (12-hydroxyeicosatetraenoic acid). Macrophages are the major source of 12/15-LO among immune cells, and 12/15-LO plays a crucial role in development of hypertension. Global Alox15- or macrophage-deficient mice are resistant to Ang II (angiotensin II)-induced hypertension. This study tests the hypothesis that macrophage 12(S)-HETE contributes to Ang II-mediated arterial constriction and thus to development of Ang II-induced hypertension. Ang II constricted isolated abdominal aortic and mesenteric arterial rings. 12(S)-HETE (100 nmol/L) alone was without effect; however, it significantly enhanced Ang II-induced constriction. The presence of wild-type macrophages also enhanced the Ang II-induced constriction, while Alox15-/- macrophages did not. Using this model, pretreatment of aortic rings with inhibitors, receptor agonists/antagonists, or removal of the endothelium, systematically uncovered an endothelium-mediated, Ang II receptor-2-mediated and superoxide-mediated enhancing effect of 12(S)-HETE on Ang II constrictions. The role of superoxide was confirmed using aortas from p47phox-/- mice where 12(S)-HETE failed to enhance constriction to Ang II. In cultured arterial endothelial cells, 12(S)-HETE increased the production of superoxide, and 12(S)-HETE or Ang II increased the production of an isothromboxane-like metabolite. A TP (thromboxane receptor) antagonist inhibited 12(S)-HETE enhancement of Ang II constriction. Both Ang II-induced hypertension and the enhancing effect of 12(S)-HETE on Ang II contractions were eliminated by a BLT2 (leukotriene B4 receptor-2) antagonist. These results outline a mechanism where the macrophage 12/15-LO pathway enhances the action of Ang II. 12(S)-HETE, acting on the BLT2, contributes to the hypertensive action of Ang II in part by promoting endothelial synthesis of a superoxide-derived TP agonist.


Subject(s)
12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/pharmacology , Angiotensin II/pharmacology , Aorta/drug effects , Mesenteric Arteries/drug effects , Receptors, Leukotriene B4/metabolism , Receptors, Thromboxane/metabolism , Animals , Aorta/metabolism , Arachidonate 12-Lipoxygenase/genetics , Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Male , Mesenteric Arteries/metabolism , Mice , Mice, Knockout , Superoxides/metabolism
3.
Int J Mol Sci ; 21(24)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371319

ABSTRACT

Histamine is a basic amine stored in mast cells, with its release capable of activating one of four histamine receptors. The histamine 3 receptor (H3R) is known to be cardioprotective during acute ischemia by acting to limit norepinephrine release. However, a recent study reported that myofibroblasts isolated from the infarct zone of rat hearts responded to H3R activation by up-regulating collagen production. Thus, it is necessary to clarify the potential role of the H3R in relation to fibrosis in the heart. We identified that the mouse left ventricle (LV) expresses the H3R. Isolation of mouse cardiac fibroblasts determined that while angiotensin II (Ang II) increased levels of the H3R, these cells did not produce excess collagen in response to H3R activation. Using the Ang II mouse model of adverse cardiac remodeling, we found that while H3R blockade had little effect on cardiac fibrosis, activation of the H3R reduced cardiac fibrosis and macrophage infiltration. These findings suggest that when activated, the H3R is anti-inflammatory and anti-fibrotic in the mouse heart and may be a promising target for protecting against cardiac fibrosis.


Subject(s)
Angiotensin II/pharmacology , Disease Models, Animal , Fibrosis/drug therapy , Inflammation/drug therapy , Receptors, Histamine H3/metabolism , Ventricular Remodeling/drug effects , Animals , Fibrosis/metabolism , Fibrosis/pathology , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley
4.
Clin Sci (Lond) ; 133(8): 939-951, 2019 04 30.
Article in English | MEDLINE | ID: mdl-30979784

ABSTRACT

Epoxyeicosatrienoic acids (EETs) and their synthetic analogs have cardiovascular protective effects. Here, we investigated the action of a novel EET analog EET-B on the progression of post-myocardial infarction (MI) heart failure in spontaneously hypertensive rats (SHR). Adult male SHR were divided into vehicle- and EET-B (10 mg/kg/day; p.o., 9 weeks)-treated groups. After 2 weeks of treatment, rats were subjected to 30-min left coronary artery occlusion or sham operation. Systolic blood pressure (SBP) and echocardiography (ECHO) measurements were performed at the beginning of study, 4 days before, and 7 weeks after MI. At the end of the study, tissue samples were collected for histological and biochemical analyses. We demonstrated that EET-B treatment did not affect blood pressure and cardiac parameters in SHR prior to MI. Fractional shortening (FS) was decreased to 18.4 ± 1.0% in vehicle-treated MI rats compared with corresponding sham (30.6 ± 1.0%) 7 weeks following MI induction. In infarcted SHR hearts, EET-B treatment improved FS (23.7 ± 0.7%), markedly increased heme oxygenase-1 (HO-1) immunopositivity in cardiomyocytes and reduced cardiac inflammation and fibrosis (by 13 and 19%, respectively). In conclusion, these findings suggest that EET analog EET-B has beneficial therapeutic actions to reduce cardiac remodeling in SHR subjected to MI.


Subject(s)
Arachidonic Acids/administration & dosage , Myocardial Infarction/drug therapy , Animals , Arachidonic Acids/chemistry , Blood Pressure , Disease Models, Animal , Heart/physiopathology , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Humans , Male , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Rats , Rats, Inbred SHR
5.
J Biol Chem ; 293(27): 10675-10691, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29777058

ABSTRACT

Endothelium-derived epoxyeicosatrienoic acids (EETs) have numerous vascular activities mediated by G protein-coupled receptors. Long-chain free fatty acids and EETs activate GPR40, prompting us to investigate the role of GPR40 in some vascular EET activities. 14,15-EET, 11,12-EET, arachidonic acid, and the GPR40 agonist GW9508 increase intracellular calcium concentrations in human GPR40-overexpressing HEK293 cells (EC50 = 0.58 ± 0.08 µm, 0.91 ± 0.08 µm, 3.9 ± 0.06 µm, and 19 ± 0.37 nm, respectively). EETs with cis- and trans-epoxides had similar activities, whereas substitution of a thiirane sulfur for the epoxide oxygen decreased the activities. 8,9-EET, 5,6-EET, and the epoxide hydrolysis products 11,12- and 14,15-dihydroxyeicosatrienoic acids were less active than 11,12-EET. The GPR40 antagonist GW1100 and siRNA-mediated GPR40 silencing blocked the EET- and GW9508-induced calcium increases. EETs are weak GPR120 agonists. GPR40 expression was detected in human and bovine endothelial cells (ECs), smooth muscle cells, and arteries. 11,12-EET concentration-dependently relaxed preconstricted coronary arteries; however, these relaxations were not altered by GW1100. In human ECs, 11,12-EET increased MAP kinase (MAPK)-mediated ERK phosphorylation, phosphorylation and levels of connexin-43 (Cx43), and expression of cyclooxygenase-2 (COX-2), all of which were inhibited by GW1100 and the MAPK inhibitor U0126. Moreover, siRNA-mediated GPR40 silencing decreased 11,12-EET-induced ERK phosphorylation. These results indicated that GPR40 is a low-affinity EET receptor in vascular cells and arteries. We conclude that epoxidation of arachidonic acid to EETs enhances GPR40 agonist activity and that 11,12-EET stimulation of GPR40 increases Cx43 and COX-2 expression in ECs via ERK phosphorylation.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , Endothelium, Vascular/metabolism , Gene Expression Regulation/drug effects , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , 8,11,14-Eicosatrienoic Acid/pharmacology , Animals , Cattle , Endothelium, Vascular/cytology , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Patch-Clamp Techniques , Phosphorylation , Receptors, G-Protein-Coupled/genetics
6.
J Lipid Res ; 59(4): 615-624, 2018 04.
Article in English | MEDLINE | ID: mdl-29472381

ABSTRACT

Polarization of macrophages to proinflammatory M1 and to antiinflammatory alternatively activated M2 states has physiological implications in the development of experimental hypertension and other pathological conditions. 12/15-Lipoxygenase (12/15-LO) and its enzymatic products 12(S)- and 15(S)-hydroxyeicosatetraenoic acid (HETE) are essential in the process since disruption of the gene encoding 12/15-LO renders the mice unsusceptible to hypertension. The objective was to test the hypothesis that M2 macrophages catabolize 12(S)-HETE into products that are incapable of promoting vasoconstriction. Cultured M2 macrophages metabolized externally added [14C]12(S)-HETE into more polar metabolites, while M1 macrophages had little effect on the catabolism. The major metabolites were identified by mass spectrometry as (ω-1)-hydroxylation and ß-oxidation products. The conversion was inhibited by both peroxisomal ß-oxidation inhibitor, thioridazine, and cytochrome P450 inhibitors. Quantitative PCR analysis confirmed that several cytochrome P450 enzymes (CYP2E1 and CYP1B1) and peroxisomal ß-oxidation markers were upregulated upon M2 polarization. The identified 12,19-dihydroxy-5,8,10,14-eicosatetraenoic acid and 8-hydroxy-6,10-hexadecadienoic acid metabolites were tested on abdominal aortic rings for biological activity. While 12(S)-HETE enhanced vasoconstrictions to angiotensin II from 15% to 25%, the metabolites did not. These results indicate that M2, but not M1, macrophages degrade 12(S)-HETE into products that no longer enhance the angiotensin II-induced vascular constriction, supporting a possible antihypertensive role of M2 macrophages.


Subject(s)
12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism , Macrophages/metabolism , Animals , Hydroxylation , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction
7.
Endocrinology ; 159(1): 238-247, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29088382

ABSTRACT

Hyperaldosteronism is associated with hypertension, cardiac hypertrophy, and congestive heart failure. Steroidogenic factors facilitate aldosterone secretion by increasing adrenal blood flow. Angiotensin (Ang) II decreases adrenal vascular tone through release of zona glomerulosa (ZG) cell-derived vasodilatory eicosanoids. However, ZG cell-mediated relaxation of bovine adrenal cortical arteries to Ang II is not altered by angiotensin type 1 or 2 receptor antagonists. Because traditional Ang II receptors do not mediate these vasorelaxations to Ang II, we investigated the role of Ang II metabolites. Ang III was identified by liquid chromatography-mass spectrometry as the primary ZG cell metabolite of Ang II. Ang III stimulated ZG cell-mediated relaxation of adrenal arteries with greater potency than did Ang II. Furthermore, ZG cell-mediated relaxations of adrenal arteries by Ang II were attenuated by aminopeptidase inhibition, and Ang III-stimulated relaxations persisted. Ang IV had little effect compared with Ang II. Moreover, ZG cell-mediated relaxations of adrenal arteries by Ang II were attenuated by an Ang III antagonist but not by an Ang (1-7) antagonist. In contrast, Ang II and Ang III were equipotent in stimulating aldosterone secretion from ZG cells and were unaffected by aminopeptidase inhibition. Additionally, aspartyl and leucyl aminopeptidases, which convert Ang II to Ang III, are the primary peptidase expressed in ZG cells. This was confirmed by enzyme activity. These data indicate that intra-adrenal metabolism of Ang II to Ang III is required for ZG cell-mediated relaxations of adrenal arteries but not aldosterone secretion. These studies have defined an important role of Ang III in the adrenal gland.


Subject(s)
Adrenal Cortex/blood supply , Angiotensin III/metabolism , Angiotensin II/metabolism , Arterioles/metabolism , Endothelium, Vascular/metabolism , Muscle, Smooth, Vascular/metabolism , Zona Glomerulosa/metabolism , Abattoirs , Adrenal Cortex/drug effects , Adrenal Cortex/metabolism , Aldosterone/metabolism , Aminopeptidases/antagonists & inhibitors , Aminopeptidases/genetics , Aminopeptidases/metabolism , Angiotensin I/antagonists & inhibitors , Angiotensin I/metabolism , Angiotensin II/analogs & derivatives , Angiotensin II/chemistry , Angiotensin II/pharmacology , Animals , Arterioles/cytology , Arterioles/drug effects , Cattle , Cells, Cultured , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Gene Expression Regulation, Enzymologic/drug effects , In Vitro Techniques , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Protease Inhibitors/pharmacology , Vasodilation/drug effects , Zona Glomerulosa/cytology , Zona Glomerulosa/drug effects
8.
Endocrinology ; 159(1): 217-226, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29140411

ABSTRACT

Angiotensin II (Ang II) and adrenocorticotropic hormone (ACTH) regulate adrenal vascular tone in vitro through endothelial and zona glomerulosa cell-derived mediators. The role of these mediators in regulating adrenal blood flow (ABF) and mean arterial pressure (MAP) was examined in anesthetized rats. Ang II (0.01 to 100 ng/kg) increased ABF [maximal increase of 97.2 ± 6.9 perfusion units (PUs) at 100 ng/kg] and MAP (basal, 115 ± 7 mm Hg; Ang II, 163 ± 5 mm Hg). ACTH (0.1 to 1000 ng/kg) also increased ABF (maximum increase of 91.4 ± 10.7 PU) without changing MAP. ABF increase by Ang II was partially inhibited by the nitric oxide (NO) synthase inhibitor N-nitro-l-arginine methyl ester (L-NAME) (maximum increase of 72.9 ± 4.2 PU), the cytochrome P450 inhibitor miconazole (maximum increase of 39.1 ± 6.8 PU) and the epoxyeicosatrienoic acid (EET) antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE) (maximum increase of 56.0 ± 13.7 PU) alone, whereas combined administration of miconazole and L-NAME (maximum increase of 16.40 ± 8.98 PU) ablated it. These treatments had no effect on MAP. Indomethacin did not affect the increase in ABF or MAP induced by Ang II. The ABF increase by ACTH was partially ablated by miconazole and 14,15-EEZE but not by L-NAME. Steroidogenic stimuli such as Ang II and ACTH increase ABF to promote oxygen and cholesterol delivery for steroidogenesis and aldosterone transport to its target tissues. The increases in ABF induced by Ang II are mediated by release of NO and EETs, whereas ABF increases with ACTH are mediated by EETs only.


Subject(s)
Adrenal Glands/blood supply , Adrenocorticotropic Hormone/metabolism , Angiotensin II/metabolism , Receptor, Angiotensin, Type 2/agonists , Receptors, Corticotropin/agonists , Regional Blood Flow , Signal Transduction , 8,11,14-Eicosatrienoic Acid/analogs & derivatives , 8,11,14-Eicosatrienoic Acid/pharmacology , Adrenal Glands/drug effects , Adrenal Glands/metabolism , Adrenocorticotropic Hormone/administration & dosage , Angiotensin II/administration & dosage , Animals , Cyclooxygenase Inhibitors/pharmacology , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Eicosanoids/antagonists & inhibitors , Eicosanoids/blood , Eicosanoids/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/enzymology , Endothelium, Vascular/metabolism , Enzyme Inhibitors/pharmacology , Indomethacin/pharmacology , Injections, Intravenous , Male , Miconazole/pharmacology , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 2/metabolism , Receptors, Corticotropin/metabolism , Regional Blood Flow/drug effects , Signal Transduction/drug effects
9.
J Cardiovasc Pharmacol ; 70(4): 211-224, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28937442

ABSTRACT

Biologically active epoxyeicosatrienoic acid (EET) regioisomers are synthesized from arachidonic acid by cytochrome P450 epoxygenases of endothelial, myocardial, and renal tubular cells. EETs relax vascular smooth muscle and decrease inflammatory cell adhesion and cytokine release. Renal EETs promote sodium excretion and vasodilation to decrease hypertension. Cardiac EETs reduce infarct size after ischemia-reperfusion injury and decrease fibrosis and inflammation in heart failure. In diabetes, EETs improve insulin sensitivity, increase glucose tolerance, and reduce the renal injury. These actions of EETs emphasize their therapeutic potential. To minimize metabolic inactivation, 14,15-EET agonist analogs with stable epoxide bioisosteres and carboxyl surrogates were developed. In preclinical rat models, a subset of agonist analogs, termed EET-A, EET-B, and EET-C22, are orally active with good pharmacokinetic properties. These orally active EET agonists lower blood pressure and reduce cardiac and renal injury in spontaneous and angiotensin hypertension. Other beneficial cardiovascular actions include improved endothelial function and cardiac antiremodeling actions. In rats, EET analogs effectively combat acute and chronic kidney disease including drug- and radiation-induced kidney damage, hypertension and cardiorenal syndrome kidney damage, and metabolic syndrome and diabetes nephropathy. The compelling preclinical efficacy supports the prospect of advancing EET analogs to human clinical trials for kidney and cardiovascular diseases.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , Blood Pressure/drug effects , Vasodilation/drug effects , 8,11,14-Eicosatrienoic Acid/administration & dosage , 8,11,14-Eicosatrienoic Acid/chemistry , Administration, Oral , Animals , Blood Pressure/physiology , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/physiopathology , Fatty Acids, Monounsaturated/administration & dosage , Fatty Acids, Monounsaturated/chemistry , Humans , Hypertension/drug therapy , Hypertension/physiopathology , Kidney Diseases/drug therapy , Kidney Diseases/physiopathology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/physiology , Structure-Activity Relationship , Vasodilation/physiology
10.
Front Pharmacol ; 5: 216, 2014.
Article in English | MEDLINE | ID: mdl-25295006

ABSTRACT

Epoxyeicosatrienoic acids (EETs) contribute to blood pressure regulation leading to the concept that EETs can be therapeutically targeted for hypertension and the associated end organ damage. In the present study, we investigated anti-hypertensive and kidney protective actions of an EET analog, EET-B in angiotensin II (ANG II)-induced hypertension. EET-B was administered in drinking water for 14 days (10 mg/kg/d) and resulted in a decreased blood pressure elevation in ANG II hypertension. At the end of the two-week period, blood pressure was 30 mmHg lower in EET analog-treated ANG II hypertensive rats. The vasodilation of mesenteric resistance arteries to acetylcholine was impaired in ANG II hypertension; however, it was improved with EET-B treatment. Further, EET-B protected the kidney in ANG II hypertension as evidenced by a marked 90% decrease in albuminuria and 54% decrease in nephrinuria. Kidney histology demonstrated a decrease in renal tubular cast formation in EET analog-treated hypertensive rats. In ANG II hypertension, EET-B treatment markedly lowered renal inflammation. Urinary monocyte chemoattractant protein-1 excretion was decreased by 55% and kidney macrophage infiltration was reduced by 52% with EET-B treatment. Overall, our results demonstrate that EET-B has anti-hypertensive properties, improves vascular function, and decreases renal inflammation and injury in ANG II hypertension.

11.
J Med Chem ; 57(16): 6965-72, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25119815

ABSTRACT

The cytochrome P450 eicosanoid 14,15-epoxyeicosa-5,8,11-trienoic acid (14,15-EET) is a powerful endogenous autacoid that has been ascribed an impressive array of physiologic functions including regulation of blood pressure. Because 14,15-EET is chemically and metabolically labile, structurally related surrogates containing epoxide bioisosteres were introduced and have become useful in vitro pharmacologic tools but are not suitable for in vivo applications. A new generation of EET mimics incorporating modifications to the carboxylate were prepared and evaluated for vasorelaxation and inhibition of soluble epoxide hydrolase (sEH). Tetrazole 19 (ED50 0.18 µM) and oxadiazole-5-thione 25 (ED50 0.36 µM) were 12- and 6-fold more potent, respectively, than 14,15-EET as vasorelaxants; on the other hand, their ability to block sEH differed substantially, i.e., 11 vs >500 nM. These data will expedite the development of potent and specific in vivo drug candidates.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , Vasodilator Agents/chemistry , Vasodilator Agents/pharmacology , 8,11,14-Eicosatrienoic Acid/chemistry , Animals , Cattle , Chemistry Techniques, Synthetic , Coronary Vessels/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Humans , In Vitro Techniques , Molecular Mimicry , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Oxamic Acid/analogs & derivatives , Oxamic Acid/chemistry , Oxamic Acid/pharmacology , Tetrazoles/chemistry , Tetrazoles/pharmacology , Vasodilation/drug effects , Vasodilator Agents/chemical synthesis
12.
J Lipid Res ; 55(10): 2093-102, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24958911

ABSTRACT

Microsomal epoxide hydrolase (EPHX1, EC 3.3.2.9) is a highly abundant α/ß-hydrolase enzyme that is known for its catalytical epoxide hydrolase activity. A wide range of EPHX1 functions have been demonstrated including xenobiotic metabolism; however, characterization of its endogenous substrates is limited. In this study, we present evidence that EPHX1 metabolizes the abundant endocannabinoid 2-arachidonoylglycerol (2-AG) to free arachidonic acid (AA) and glycerol. The EPHX1 metabolism of 2-AG was demonstrated using commercially available EPHX1 microsomes as well as PC-3 cells overexpressing EPHX1. Conversely, EPHX1 siRNA markedly reduced the EPHX1 expression and 2-AG metabolism in HepG2 cells and LNCaP cells. A selective EPHX1 inhibitor, 10-hydroxystearamide, inhibited 2-AG metabolism and hydrolysis of a well-known EPHX1 substrate, cis-stilbene oxide. Among the inhibitors studied, a serine hydrolase inhibitor, methoxy-arachidonyl fluorophosphate, was the most potent inhibitor of 2-AG metabolism by EPHX1 microsomes. These results demonstrate that 2-AG is an endogenous substrate for EPHX1, a potential role of EPHX1 in the endocannabinoid signaling and a new AA biosynthetic pathway.


Subject(s)
Arachidonic Acids/metabolism , Endocannabinoids/metabolism , Epoxide Hydrolases/metabolism , Glycerides/metabolism , Microsomes/enzymology , Signal Transduction/physiology , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Hep G2 Cells , Humans , Signal Transduction/drug effects
13.
PeerJ ; 2: e414, 2014.
Article in English | MEDLINE | ID: mdl-24949235

ABSTRACT

Background and Purpose. In rat middle cerebral arteries, endothelium-dependent hyperpolarization (EDH) is mediated by activation of calcium-activated potassium (KCa) channels specifically KCa2.3 and KCa3.1. Lipoxygenase (LOX) products function as endothelium-derived hyperpolarizing factors (EDHFs) in rabbit arteries by stimulating KCa2.3. We investigated if LOX products contribute to EDH in rat cerebral arteries. Methods. Arachidonic acid (AA) metabolites produced in middle cerebral arteries were measured using HPLC and LC/MS. Vascular tension and membrane potential responses to SLIGRL were simultaneously recorded using wire myography and intracellular microelectrodes. Results. SLIGRL, an agonist at PAR2 receptors, caused EDH that was inhibited by a combination of KCa2.3 and KCa3.1 blockade. Non-selective LOX-inhibition reduced EDH, whereas inhibition of 12-LOX had no effect. Soluble epoxide hydrolase (sEH) inhibition enhanced the KCa2.3 component of EDH. Following NO synthase (NOS) inhibition, the KCa2.3 component of EDH was absent. Using HPLC, middle cerebral arteries metabolized (14)C-AA to 15- and 12-LOX products under control conditions. With NOS inhibition, there was little change in LOX metabolites, but increased F-type isoprostanes. 8-iso-PGF2α inhibited the KCa2.3 component of EDH. Conclusions. LOX metabolites mediate EDH in rat middle cerebral arteries. Inhibition of sEH increases the KCa2.3 component of EDH. Following NOS inhibition, loss of KCa2.3 function is independent of changes in LOX production or sEH inhibition but due to increased isoprostane production and subsequent stimulation of TP receptors. These findings have important implications in diseases associated with loss of NO signaling such as stroke; where inhibition of sEH and/or isoprostane formation may of benefit.

14.
Clin Sci (Lond) ; 127(7): 463-74, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24707975

ABSTRACT

Epoxyeicosatrienoic acids (EETs) contribute to haemodynamics, electrolyte homoeostasis and blood pressure regulation, leading to the concept that EETs can be therapeutically targeted for hypertension. In the present study, multiple structural EET analogues were synthesized based on the EET pharmacophore and vasodilator structure-activity studies. Four EET analogues with 91-119% vasodilatory activity in the isolated bovine coronary artery (EC50: 0.18-1.6 µM) were identified and studied for blood-pressure-lowering in hypertension. Two EET analogues in which the COOH group at carbon 1 of the EET pharmacophore was replaced with either an aspartic acid (EET-A) or a heterocyclic surrogate (EET-X) were administered for 14 days [10 mg/kg per day intraperitoneally (i.p.)]. Both EET-A and EET-X lowered blood pressure in spontaneously hypertensive rats (SHRs) and in angiotensin II (AngII) hypertension. On day 14, the mean arterial pressures in EET analogue-treated AngII-hypertensive and SHRs were 30-50 mmHg (EET-A) and 15-20 mmHg (EET-X) lower than those in vehicle-treated controls. These EET analogues (10 mg/kg per day) were further tested in AngII hypertension by administering orally in drinking water for 14 days and EET-A lowered blood pressure. Additional experiments demonstrated that EET-A inhibits epithelial sodium channel (ENaC) activity in cultured cortical collecting duct cells and reduced renal expression of ENaC subunits in AngII hypertension. In conclusion, we have characterized EET-A as an orally active antihypertensive EET analogue that protects vascular endothelial function and has ENaC inhibitory activity in AngII hypertension.


Subject(s)
Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Hypertension/drug therapy , Sodium Channel Blockers/pharmacology , Vasodilation/drug effects , 8,11,14-Eicosatrienoic Acid/analogs & derivatives , 8,11,14-Eicosatrienoic Acid/chemistry , 8,11,14-Eicosatrienoic Acid/pharmacology , Animals , Antihypertensive Agents/chemistry , Hemodynamics , Hypertension/genetics , Hypertension/metabolism , Male , Mice , Rats , Rats, Inbred SHR , Rats, Sprague-Dawley , Sodium Channel Blockers/chemistry
15.
Endocrinology ; 155(1): 127-32, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24169551

ABSTRACT

Adrenal blood flow (ABF) is closely coupled to steroid hormone release. ACTH and angiotensin (Ang) II stimulate cortisol and aldosterone secretion; however, their effects on ABF remain poorly defined. We used the laser-Doppler technique to measure rat ABF. Anesthetized male Sprague-Dawley rats were cannulated for mean arterial pressure (MAP) measurement and drug infusion. The left adrenal gland was exposed for ABF measurement. ABF and MAP changes to ACTH and Ang II were determined. Bolus injections of Ang II (0.01-1000 ng/kg) increased ABF (maximal increase = 110 ± 18 perfusion units at 1000 ng/kg) and increased MAP at doses greater than 10 ng/kg (basal, 99.2 ± 1.4 mm Hg; 1000 ng/kg Ang II, 149.7 ± 3.9 mm Hg). ACTH (0.1-1000 ng/kg) increased ABF (maximum increase = 158 ± 33 perfusion units) without increasing MAP. ABF increases induced by Ang II and ACTH were ablated by the cytochrome 450 inhibitor miconazole (2 mg/kg). Bolus injections of endothelin-1 (1-1000 ng/kg) increased ABF only at 1 ng/kg and increased MAP at 1000 ng/kg. Bolus injections of sodium nitroprusside increased ABF at 1 and 10 µg/kg and decreased MAP at 10 µg/kg. Thus, laser-Doppler flowmetry is a useful tool for understanding ABF regulation by peptides that stimulate steroid hormone release. Our results demonstrate that Ang II and ACTH increases in ABF are mediated by a cytochrome P450 metabolite.


Subject(s)
Adrenal Glands/blood supply , Adrenal Glands/drug effects , Aldosterone/metabolism , Adrenal Glands/metabolism , Adrenocorticotropic Hormone/chemistry , Angiotensin II/chemistry , Animals , Arterial Pressure/drug effects , Endothelin-1/metabolism , Laser-Doppler Flowmetry , Male , Nitroprusside/chemistry , Rats , Rats, Sprague-Dawley , Steroids/chemistry , Vasoconstrictor Agents/chemistry
16.
Am J Physiol Heart Circ Physiol ; 306(1): H26-32, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24163073

ABSTRACT

Targeted disruption of the Alox15 gene makes mice resistant to angiotensin II-, DOCA/salt-, and N(ω)-nitro-L-arginine methyl ester (L-NAME)-induced experimental hypertension. Macrophages, a primary source of Alox15, are facilitating this resistance, but the underlying mechanism is not known. Because Alox15 metabolites are peroxisome proliferator-activated receptor (PPAR)γ agonists, we hypothesized that activation of macrophage PPARγ is the key step in Alox15 mediation of hypertension. Thioglycollate, used for macrophage elicitation, selectively upregulated PPARγ and its target gene CD36 in peritoneal macrophages of both wild-type (WT) and Alox15(-/-) mice. Moreover, thioglycollate-injected Alox15(-/-) mice became hypertensive upon L-NAME treatment. A similar hypertensive effect was observed with adoptive transfer of thioglycollate-elicited Alox15(-/-) macrophages into Alox15(-/-) recipient mice. The role of PPARγ was further specified by using the selective PPARγ antagonist GW9662. WT mice treated with 50 µg/kg daily dose of GW9662 for 12 days became resistant to L-NAME-induced hypertension. The PPARγ antagonist treatment also prevented L-NAME-induced hypertension in thioglycollate-injected Alox15(-/-) mice, indicating a PPARγ-mediated effect in macrophage elicitation and the resultant hypertension. These results indicate a regulatory role for macrophage-localized PPARγ in L-NAME-induced experimental hypertension.


Subject(s)
Hypertension/metabolism , Macrophages/metabolism , PPAR gamma/metabolism , Anilides/pharmacology , Animals , Arachidonate 12-Lipoxygenase/genetics , Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/metabolism , CD36 Antigens/genetics , CD36 Antigens/metabolism , Hypertension/chemically induced , Hypertension/genetics , Macrophages/drug effects , Macrophages/transplantation , Mice , Mice, Inbred C57BL , NG-Nitroarginine Methyl Ester/toxicity , PPAR gamma/antagonists & inhibitors , PPAR gamma/genetics , Thioglycolates/pharmacology , Up-Regulation
17.
Endocrinology ; 154(12): 4768-76, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24092640

ABSTRACT

Hyperaldosteronism is linked to the development and progression of several different cardiovascular diseases. Angiotensin (Ang) II increases aldosterone secretion and adrenal blood flow. Ang II peptide fragments are produced by various peptidases, and these Angs have diverse and vital physiologic roles. Due to the uncharacteristic vasorelaxation of adrenal arteries by Ang II, we tested the hypothesis that Ang II metabolism contributes to its relaxant activity in adrenal arteries. Metabolism of Angs by bovine adrenal cortical arteries and isolated bovine adrenal vascular cells was measured by liquid chromatography-mass spectrometry. The primary Ang metabolites of adrenal arteries are Ang III and Ang (1-7), with Ang IV produced to a lesser extent. Bovine microvascular endothelial cells produced a similar metabolic profile to adrenal arteries, whereas bovine adrenal artery smooth muscle cells exhibited less metabolism. In preconstricted adrenal arteries, Ang II caused relaxation in picomolar concentrations and constrictions at 10nM. Ang-converting enzyme 2 inhibition augmented this relaxation response, whereas aminopeptidase inhibition did not. Ang III was equipotent to Ang II in relaxing adrenal arteries. Ang IV did not cause relaxation. Nitric oxide synthase inhibition enhanced Ang II-induced constriction of adrenal arteries. Aminopeptidase inhibition increased the concentration range for Ang II-induced constriction of adrenal arteries. Ang III and Ang IV did not change the basal tone but caused constriction of adrenal arteries with nitric oxide synthase inhibition. These data indicate that Ang II metabolism modulates the vascular effects of Ang II in the adrenal vasculature.


Subject(s)
Adrenal Glands/blood supply , Angiotensin III/metabolism , Angiotensin II/metabolism , Angiotensin I/metabolism , Endothelium, Vascular/metabolism , Peptide Fragments/metabolism , Vasodilation/physiology , Adrenal Glands/metabolism , Angiotensin III/genetics , Animals , Cattle , Cells, Cultured , Endothelial Cells/metabolism , Gene Expression Regulation/physiology
18.
Article in English | MEDLINE | ID: mdl-23872364

ABSTRACT

Lipoxygenases regulate vascular function by metabolizing arachidonic acid (AA) to dilator eicosanoids. Previously, we showed that endothelium-targeted adenoviral vector-mediated gene transfer of the human 15-lipoxygenase-1 (h15-LO-1) enhances arterial relaxation through the production of vasodilatory hydroxyepoxyeicosatrienoic acid (HEETA) and trihydroxyeicosatrienoic acid (THETA) metabolites. To further define this function, a transgenic (Tg) mouse line that overexpresses h15-LO-1 was studied. Western blot, immunohistochemistry and RT-PCR results confirmed expression of 15-LO-1 transgene in tissues, especially high quantity in coronary arterial wall, of Tg mice. Reverse-phase HPLC analysis of [(14)C]-AA metabolites in heart tissues revealed enhanced 15-HETE synthesis in Tg vs. WT mice. Among the 15-LO-1 metabolites, 15-HETE, erythro-13-H-14,15-EETA, and 11(R),12(S),15(S)-THETA relaxed the mouse mesenteric arteries to the greatest extent. The presence of h15-LO-1 increased acetylcholine- and AA-mediated relaxation in mesenteric arteries of Tg mice compared to WT mice. 15-LO-1 was most abundant in the heart; therefore, we used the Langendorff heart model to test the hypothesis that elevated 15-LO-1 levels would increase coronary flow following a short ischemia episode. Both peak flow and excess flow of reperfused hearts were significantly elevated in hearts from Tg compared to WT mice being 2.03 and 3.22 times greater, respectively. These results indicate that h15-LO-1-derived metabolites are highly vasoactive and may play a critical role in regulating coronary blood flow.


Subject(s)
Arachidonate 15-Lipoxygenase/metabolism , Coronary Vessels/physiology , Mesenteric Arteries/physiology , Animals , Aorta/enzymology , Aorta/physiology , Arachidonate 15-Lipoxygenase/genetics , Arachidonic Acid/metabolism , Blood Pressure , Coronary Circulation , Coronary Vessels/enzymology , Gene Expression Regulation, Enzymologic , Humans , Hyperemia/enzymology , Hyperemia/physiopathology , Male , Mesenteric Arteries/enzymology , Mice , Mice, Transgenic , Organ Specificity , Protein Transport , Vasodilation
19.
Biol Chem ; 394(9): 1205-12, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23729620

ABSTRACT

Bradykinin causes vascular relaxations through release of endothelial relaxing factors including prostacyclin, nitric oxide (NO) and epoxyeicosatrienoic acids (EETs). Bradykinin is metabolized by angiotensin converting enzyme (ACE) and ACE inhibition enhances bradykinin relaxations. Our goal was to characterize the role of bradykinin receptors and endothelial factors in ACE inhibitor-enhanced relaxations in bovine coronary arteries. In U46619 preconstricted arteries, bradykinin (10-11-10-8m) caused concentration-dependent relaxations (maximal relaxation ≥100%, log EC50=-9.8±0.1). In the presence of the NO synthase inhibitor, N-nitro-L-arginine (L-NA, 30 µm) and the cyclooxygenase inhibitor, indomethacin (10 µm), relaxations were reduced by an inhibitor of EET synthesis, miconazole (10 µm) (maximal relaxation=55±10%). Bradykinin relaxations were inhibited by the bradykinin 2 (B2) receptor antagonist, D-Arg0-Hyp3-Thi5,8-D-Phe7-bradykinin (1 µm) (log EC50=-8.5±0.1) but not altered by the B1 receptor antagonist, des-Arg9[Leu8]bradykinin (1 µm). Mass spectrometric analysis of bovine coronary artery bradykinin metabolites revealed a time-dependent increase in bradykinin (1-5) and (1-7) suggesting metabolism by ACE. ACE inhibition with captopril (50 µm) enhanced bradykinin relaxations (log EC50=-10.3±0.1). The enhanced relaxations were eliminated by L-NA or the B1 receptor antagonist but not the B2 receptor antagonist. Our results demonstrate that ACE inhibitor-enhanced bradykinin relaxations of bovine coronary arteries occur through endothelial cell B1 receptor activation and NO.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Bradykinin/pharmacology , Captopril/metabolism , Coronary Vessels/drug effects , Endothelium, Vascular/drug effects , Nitric Oxide/metabolism , Receptor, Bradykinin B1/metabolism , Angiotensin-Converting Enzyme Inhibitors/metabolism , Animals , Bradykinin/analogs & derivatives , Bradykinin/metabolism , Captopril/pharmacology , Cattle , Coronary Vessels/metabolism , Coronary Vessels/physiology , Drug Synergism , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiology , In Vitro Techniques , Muscle Relaxation/drug effects
20.
J Am Heart Assoc ; 2(3): e000080, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23619744

ABSTRACT

BACKGROUND: Arachidonic acid (AA) and/or its enzymatic metabolites are important lipid mediators contributing to endothelium-derived hyperpolarizing factor (EDHF)-mediated dilation in multiple vascular beds, including human coronary arterioles (HCAs). However, the mechanisms of action of these lipid mediators in endothelial cells (ECs) remain incompletely defined. In this study, we investigated the role of the transient receptor potential vanilloid 4 (TRPV4) channel in AA-induced endothelial Ca(2+) response and dilation of HCAs. METHODS AND RESULTS: AA induced concentration-dependent dilation in isolated HCAs. The dilation was largely abolished by the TRPV4 antagonist RN-1734 and by inhibition of endothelial Ca(2+)-activated K(+) channels. In native and TRPV4-overexpressing human coronary artery ECs (HCAECs), AA increased intracellular Ca(2+) concentration ([Ca(2+)]i), which was mediated by TRPV4-dependent Ca(2+) entry. The AA-induced [Ca(2+)]i increase was inhibited by cytochrome P450 (CYP) inhibitors. Surprisingly, the CYP metabolites of AA, epoxyeicosatrienoic acids (EETs), were much less potent activators of TRPV4, and CYP inhibitors did not affect EET production in HCAECs. Apart from its effect on [Ca(2+)]i, AA induced endothelial hyperpolarization, and this effect was required for Ca(2+) entry through TRPV4. AA-induced and TRPV4-mediated Ca(2+) entry was also inhibited by the protein kinase A inhibitor PKI. TRPV4 exhibited a basal level of phosphorylation, which was inhibited by PKI. Patch-clamp studies indicated that AA activated TRPV4 single-channel currents in cell-attached and inside-out patches of HCAECs. CONCLUSIONS: AA dilates HCAs through a novel mechanism involving endothelial TRPV4 channel-dependent Ca(2+) entry that requires endothelial hyperpolarization, PKA-mediated basal phosphorylation of TRPV4, and direct activation of TRPV4 channels by AA.


Subject(s)
Arachidonic Acid/pharmacology , Calcium Signaling/drug effects , Calcium Signaling/physiology , Calcium/metabolism , Coronary Vessels/drug effects , Coronary Vessels/physiology , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiology , Signal Transduction/drug effects , TRPV Cation Channels/drug effects , TRPV Cation Channels/physiology , Arterioles/cytology , Arterioles/drug effects , Arterioles/physiology , Cells, Cultured , Coronary Vessels/cytology , Endothelium, Vascular/cytology , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...