Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
1.
J Med Genet ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697782

ABSTRACT

BACKGROUND: Triokinase and FMN cyclase (TKFC) is a bifunctional enzyme involved in fructose metabolism. Triokinase catalyses the phosphorylation of fructose-derived glyceraldehyde (GA) and exogenous dihydroxyacetone (DHA), while FMN cyclase generates cyclic FMN. TKFC regulates the antiviral immune response by interacting with IFIH1 (MDA5). Previously reported pathogenic variants in TKFC are associated with either a multisystemic disease or isolated hypotrichosis with loose anagen hairs. METHODS: Whole-exome sequencing identified a homozygous novel variant in TKFC (c.1624G>A; p.Gly542Arg) in an individual with a complex primary immunodeficiency disorder. The variant was characterised using enzymatic assays and yeast studies of mutant recombinant proteins. RESULTS: The individual presented with chronic active Epstein-Barr virus disease and multiple bacterial and viral infections. Clinical investigations revealed hypogammaglobulinaemia, near absent natural killer cells and decreased memory B cells. Enzymatic assays showed that this variant displayed defective DHA and GA kinase activity while maintaining FMN cyclase activity. An allogenic bone marrow transplantation corrected the patient's immunodeficiency. CONCLUSION: Our report suggests that TKFC may have a role in the immunological system. The pathological features associated with this variant are possibly linked with DHA/GA kinase inactivation through a yet an unknown mechanism. This report thus adds a possible new pathway of immunometabolism to explore further.

2.
Am J Hum Genet ; 111(4): 761-777, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38503299

ABSTRACT

Ion channels mediate voltage fluxes or action potentials that are central to the functioning of excitable cells such as neurons. The KCNB family of voltage-gated potassium channels (Kv) consists of two members (KCNB1 and KCNB2) encoded by KCNB1 and KCNB2, respectively. These channels are major contributors to delayed rectifier potassium currents arising from the neuronal soma which modulate overall excitability of neurons. In this study, we identified several mono-allelic pathogenic missense variants in KCNB2, in individuals with a neurodevelopmental syndrome with epilepsy and autism in some individuals. Recurrent dysmorphisms included a broad forehead, synophrys, and digital anomalies. Additionally, we selected three variants where genetic transmission has not been assessed, from two epilepsy studies, for inclusion in our experiments. We characterized channel properties of these variants by expressing them in oocytes of Xenopus laevis and conducting cut-open oocyte voltage clamp electrophysiology. Our datasets indicate no significant change in absolute conductance and conductance-voltage relationships of most disease variants as compared to wild type (WT), when expressed either alone or co-expressed with WT-KCNB2. However, variants c.1141A>G (p.Thr381Ala) and c.641C>T (p.Thr214Met) show complete abrogation of currents when expressed alone with the former exhibiting a left shift in activation midpoint when expressed alone or with WT-KCNB2. The variants we studied, nevertheless, show collective features of increased inactivation shifted to hyperpolarized potentials. We suggest that the effects of the variants on channel inactivation result in hyper-excitability of neurons, which contributes to disease manifestations.


Subject(s)
Epilepsy , Mutation, Missense , Neurodevelopmental Disorders , Shab Potassium Channels , Animals , Humans , Action Potentials , Epilepsy/genetics , Neurons , Oocytes , Xenopus laevis , Shab Potassium Channels/genetics , Shab Potassium Channels/metabolism , Neurodevelopmental Disorders/genetics
3.
Nat Commun ; 15(1): 467, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212606

ABSTRACT

Dietary restriction (DR) delays aging, but the mechanism remains unclear. We identified polymorphisms in mtd, the fly homolog of OXR1, which influenced lifespan and mtd expression in response to DR. Knockdown in adulthood inhibited DR-mediated lifespan extension in female flies. We found that mtd/OXR1 expression declines with age and it interacts with the retromer, which regulates trafficking of proteins and lipids. Loss of mtd/OXR1 destabilized the retromer, causing improper protein trafficking and endolysosomal defects. Overexpression of retromer genes or pharmacological restabilization with R55 rescued lifespan and neurodegeneration in mtd-deficient flies and endolysosomal defects in fibroblasts from patients with lethal loss-of-function of OXR1 variants. Multi-omic analyses in flies and humans showed that decreased Mtd/OXR1 is associated with aging and neurological diseases. mtd/OXR1 overexpression rescued age-related visual decline and tauopathy in a fly model. Hence, OXR1 plays a conserved role in preserving retromer function and is critical for neuronal health and longevity.


Subject(s)
Aging , Nervous System Diseases , Humans , Female , Aging/genetics , Longevity/genetics , Neurons/metabolism , Nervous System Diseases/metabolism , Brain/metabolism , Caloric Restriction , Mitochondrial Proteins/metabolism
4.
Am J Med Genet A ; 194(4): e63484, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38041495

ABSTRACT

Tatton-Brown-Rahman syndrome (TBRS) is a rare autosomal dominant overgrowth syndrome first reported in 2014 and caused by pathogenic variants in the DNA methyltransferase 3A (DNMT3A) gene. All individuals reported to date share a phenotype of somatic overgrowth, dysmorphic features, and intellectual disability. Peripheral neuropathy was not described in these cases. We report an adult patient with TBRS caused by a novel pathogenic DNMT3A variant (NM_175629.2: c.2036G>A, p.(Arg688His)) harboring an axonal length-dependent sensory-motor polyneuropathy. Extensive laboratory and molecular genetic work-up failed to identify alternative causes for this patient's neuropathy. We propose that axonal neuropathy may be a novel, age-dependent phenotypic feature in adults with TBRS and suggest that this syndrome should be considered in the differential diagnosis of patients with overgrowth, cognitive and psychiatric difficulties, and peripheral neuropathy.


Subject(s)
Abnormalities, Multiple , Intellectual Disability , Musculoskeletal Abnormalities , Polyneuropathies , Adult , Humans , DNA Methyltransferase 3A , Intellectual Disability/diagnosis , Intellectual Disability/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , Mutation , Abnormalities, Multiple/genetics , Syndrome , Polyneuropathies/diagnosis , Polyneuropathies/genetics
5.
Genes (Basel) ; 14(8)2023 07 27.
Article in English | MEDLINE | ID: mdl-37628590

ABSTRACT

The vacuolar H+-ATPase is a multisubunit enzyme which plays an essential role in the acidification and functions of lysosomes, endosomes, and synaptic vesicles. Many genes encoding subunits of V-ATPases, namely ATP6V0C, ATP6V1A, ATP6V0A1, and ATP6V1B2, have been associated with neurodevelopmental disorders and epilepsy. The autosomal dominant ATP6V1B2 p.Arg506* variant can cause both congenital deafness with onychodystrophy, autosomal dominant (DDOD) and deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures syndromes (DOORS). Some but not all individuals with this truncating variant have intellectual disability and/or epilepsy, suggesting incomplete penetrance and/or variable expressivity. To further explore the impact of the p.Arg506* variant in neurodevelopment and epilepsy, we generated Atp6v1b2emR506* mutant mice and performed standardized phenotyping using the International Mouse Phenotyping Consortium (IMPC) pipeline. In addition, we assessed the EEG profile and seizure susceptibility of Atp6v1b2emR506* mice. Behavioral tests revealed that the mice present locomotor hyperactivity and show less anxiety-associated behaviors. Moreover, EEG analyses indicate that Atp6v1b2emR506* mutant mice have interictal epileptic activity and that both heterozygous (like patients) and homozygous mice have reduced seizure thresholds to pentylenetetrazol. Our results confirm that variants in ATP6V1B2 can cause seizures and that the Atp6v1b2emR506* heterozygous mouse model is a valuable tool to further explore the pathophysiology and potential treatments for vacuolar ATPases-associated epilepsy and disorders.


Subject(s)
Arthrogryposis , Intellectual Disability , Vacuolar Proton-Translocating ATPases , Animals , Mice , Seizures/genetics , Causality , Adenosine Triphosphatases , Anxiety , Vacuolar Proton-Translocating ATPases/genetics
6.
Nat Genet ; 55(9): 1598-1607, 2023 09.
Article in English | MEDLINE | ID: mdl-37550531

ABSTRACT

Several molecular and phenotypic algorithms exist that establish genotype-phenotype correlations, including facial recognition tools. However, no unified framework that investigates both facial data and other phenotypic data directly from individuals exists. We developed PhenoScore: an open-source, artificial intelligence-based phenomics framework, combining facial recognition technology with Human Phenotype Ontology data analysis to quantify phenotypic similarity. Here we show PhenoScore's ability to recognize distinct phenotypic entities by establishing recognizable phenotypes for 37 of 40 investigated syndromes against clinical features observed in individuals with other neurodevelopmental disorders and show it is an improvement on existing approaches. PhenoScore provides predictions for individuals with variants of unknown significance and enables sophisticated genotype-phenotype studies by testing hypotheses on possible phenotypic (sub)groups. PhenoScore confirmed previously known phenotypic subgroups caused by variants in the same gene for SATB1, SETBP1 and DEAF1 and provides objective clinical evidence for two distinct ADNP-related phenotypes, already established functionally.


Subject(s)
Artificial Intelligence , Matrix Attachment Region Binding Proteins , Humans , Phenotype , Algorithms , Machine Learning , Biological Variation, Population , DNA-Binding Proteins , Transcription Factors
7.
Front Cell Dev Biol ; 11: 1187253, 2023.
Article in English | MEDLINE | ID: mdl-37645248

ABSTRACT

Introduction: Muscle wasting in Duchenne Muscular Dystrophy is caused by myofiber fragility and poor regeneration that lead to chronic inflammation and muscle replacement by fibrofatty tissue. Our recent findings demonstrated that Resolvin-D2, a bioactive lipid derived from omega-3 fatty acids, has the capacity to dampen inflammation and stimulate muscle regeneration to alleviate disease progression. This therapeutic avenue has many advantages compared to glucocorticoids, the current gold-standard treatment for Duchenne Muscular Dystrophy. However, the use of bioactive lipids as therapeutic drugs also faces many technical challenges such as their instability and poor oral bioavailability. Methods: Here, we explored the potential of PSB-KD107, a synthetic agonist of the resolvin-D2 receptor Gpr18, as a therapeutic alternative for Duchenne Muscular Dystrophy. Results and discussion: We showed that PSB-KD107 can stimulate the myogenic capacity of patient iPSC-derived myoblasts in vitro. RNAseq analysis revealed an enrichment in biological processes related to fatty acid metabolism, lipid biosynthesis, small molecule biosynthesis, and steroid-related processes in PSB-KD107-treated mdx myoblasts, as well as signaling pathways such as Peroxisome proliferator-activated receptors, AMP-activated protein kinase, mammalian target of rapamycin, and sphingolipid signaling pathways. In vivo, the treatment of dystrophic mdx mice with PSB-KD107 resulted in reduced inflammation, enhanced myogenesis, and improved muscle function. The positive impact of PSB-KD107 on muscle function is similar to the one of Resolvin-D2. Overall, our findings provide a proof-of concept that synthetic analogs of bioactive lipid receptors hold therapeutic potential for the treatment of Duchenne Muscular Dystrophy.

8.
PNAS Nexus ; 2(6): pgad196, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37361548

ABSTRACT

There are more than 900 genetic syndromes associated with oral manifestations. These syndromes can have serious health implications, and left undiagnosed, can hamper treatment and prognosis later in life. About 6.67% of the population will develop a rare disease during their lifetime, some of which are difficult to diagnose. The establishment of a data and tissue bank of rare diseases with oral manifestations in Quebec will help medical professionals identify the genes involved, will improve knowledge on the rare genetic diseases, and will also lead to improved patient management. It will also allow samples and information sharing with other clinicians and investigators. As an example of a condition requiring additional research, dental ankylosis is a condition in which the tooth's cementum fuses to the surrounding alveolar bone. This can be secondary to traumatic injury but is often idiopathic, and the genes involved in the idiopathic cases, if any, are poorly known. To date, patients with both identified and unidentified genetic etiology for their dental anomalies were recruited through dental and genetics clinics for the study. They underwent sequencing of selected genes or exome sequencing depending on the manifestation. We recruited 37 patients and we identified pathogenic or likely pathogenic variants in WNT10A, EDAR, AMBN, PLOD1, TSPEAR, PRKAR1A, FAM83H, PRKACB, DLX3, DSPP, BMP2, TGDS. Our project led to the establishment of the Quebec Dental Anomalies Registry, which will help researchers, medical and dental practitioners alike understand the genetics of dental anomalies and facilitate research collaborations into improved standards of care for patients with rare dental anomalies and any accompanying genetic diseases.

9.
Am J Hum Genet ; 110(7): 1068-1085, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37352860

ABSTRACT

ERI1 is a 3'-to-5' exoribonuclease involved in RNA metabolic pathways including 5.8S rRNA processing and turnover of histone mRNAs. Its biological and medical significance remain unclear. Here, we uncover a phenotypic dichotomy associated with bi-allelic ERI1 variants by reporting eight affected individuals from seven unrelated families. A severe spondyloepimetaphyseal dysplasia (SEMD) was identified in five affected individuals with missense variants but not in those with bi-allelic null variants, who showed mild intellectual disability and digital anomalies. The ERI1 missense variants cause a loss of the exoribonuclease activity, leading to defective trimming of the 5.8S rRNA 3' end and a decreased degradation of replication-dependent histone mRNAs. Affected-individual-derived induced pluripotent stem cells (iPSCs) showed impaired in vitro chondrogenesis with downregulation of genes regulating skeletal patterning. Our study establishes an entity previously unreported in OMIM and provides a model showing a more severe effect of missense alleles than null alleles within recessive genotypes, suggesting a key role of ERI1-mediated RNA metabolism in human skeletal patterning and chondrogenesis.


Subject(s)
Exoribonucleases , Histones , Humans , Exoribonucleases/genetics , Histones/genetics , Mutation, Missense/genetics , RNA, Ribosomal, 5.8S , RNA , RNA, Messenger/genetics
10.
Epigenomics ; 15(6): 351-367, 2023 03.
Article in English | MEDLINE | ID: mdl-37249002

ABSTRACT

Accurate diagnosis for patients living with neurodevelopmental disorders is often met with numerous challenges, related to the ambiguity of findings and lack of specificity in genetic variants leading to pathology. Genome-wide DNA methylation analysis has been used to develop highly sensitive and specific 'episignatures' as biomarkers capable of differentiating and classifying complex neurodevelopmental disorders. In this study we describe distinct episignatures for KAT6A syndrome, caused by pathogenic variants in the lysine acetyltransferase A gene (KAT6A), and for the two neurodevelopmental disorders associated with lysine acetyl transferase B (KAT6B). We demonstrate the ability of our models to differentiate between highly overlapping episignatures, increasing the ability to effectively identify and diagnose these conditions.


Subject(s)
DNA Methylation , Neurodevelopmental Disorders , Humans , Neurodevelopmental Disorders/genetics , Biomarkers , Histone Acetyltransferases/genetics
11.
J Med Genet ; 60(11): 1127-1132, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37055165

ABSTRACT

Rothmund-Thomson syndrome (RTS) is a rare, heterogeneous autosomal recessive genodermatosis, with poikiloderma as its hallmark. It is classified into two types: type I, with biallelic variants in ANAPC1 and juvenile cataracts, and type II, with biallelic variants in RECQL4, increased cancer risk and no cataracts. We report on six Brazilian probands and two siblings of Swiss/Portuguese ancestry presenting with severe short stature, widespread poikiloderma and congenital ocular anomalies. Genomic and functional analysis revealed compound heterozygosis for a deep intronic splicing variant in trans with loss of function variants in DNA2, with reduction of the protein levels and impaired DNA double-strand break repair. The intronic variant is shared by all patients, as well as the Portuguese father of the European siblings, indicating a probable founder effect. Biallelic variants in DNA2 were previously associated with microcephalic osteodysplastic primordial dwarfism. Although the individuals reported here present a similar growth pattern, the presence of poikiloderma and ocular anomalies is unique. Thus, we have broadened the phenotypical spectrum of DNA2 mutations, incorporating clinical characteristics of RTS. Although a clear genotype-phenotype correlation cannot be definitively established at this moment, we speculate that the residual activity of the splicing variant allele could be responsible for the distinct manifestations of DNA2-related syndromes.

12.
HGG Adv ; 4(1): 100157, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36408368

ABSTRACT

WDR5 is a broadly studied, highly conserved key protein involved in a wide array of biological functions. Among these functions, WDR5 is a part of several protein complexes that affect gene regulation via post-translational modification of histones. We collected data from 11 unrelated individuals with six different rare de novo germline missense variants in WDR5; one identical variant was found in five individuals and another variant in two individuals. All individuals had neurodevelopmental disorders including speech/language delays (n = 11), intellectual disability (n = 9), epilepsy (n = 7), and autism spectrum disorder (n = 4). Additional phenotypic features included abnormal growth parameters (n = 7), heart anomalies (n = 2), and hearing loss (n = 2). Three-dimensional protein structures indicate that all the residues affected by these variants are located at the surface of one side of the WDR5 protein. It is predicted that five out of the six amino acid substitutions disrupt interactions of WDR5 with RbBP5 and/or KMT2A/C, as part of the COMPASS (complex proteins associated with Set1) family complexes. Our experimental approaches in Drosophila melanogaster and human cell lines show normal protein expression, localization, and protein-protein interactions for all tested variants. These results, together with the clustering of variants in a specific region of WDR5 and the absence of truncating variants so far, suggest that dominant-negative or gain-of-function mechanisms might be at play. All in all, we define a neurodevelopmental disorder associated with missense variants in WDR5 and a broad range of features. This finding highlights the important role of genes encoding COMPASS family proteins in neurodevelopmental disorders.


Subject(s)
Autism Spectrum Disorder , Drosophila Proteins , Language Development Disorders , Neurodevelopmental Disorders , Animals , Humans , Autism Spectrum Disorder/genetics , Drosophila melanogaster/genetics , Neurodevelopmental Disorders/genetics , Cluster Analysis , Chromatin , Intracellular Signaling Peptides and Proteins/genetics , Histone-Lysine N-Methyltransferase/genetics , Drosophila Proteins/genetics
13.
Case Rep Ophthalmol ; 13(3): 793, 2022.
Article in English | MEDLINE | ID: mdl-36341038

ABSTRACT

Colobomas of the globe and microphthalmia are congenital conditions that can strongly affect vision. Etiologies are varied and include embryonic and hereditary origins. We report what is, to the best of our knowledge, the first case of a SIX6 gene pathogenic variant associated with a phenotype of both bilateral microphthalmia and extensive colobomas of the globes. A 3-week-old boy presented with bilateral microphthalmia and iris, optic nerve, and chorioretinal colobomas. Genetic analysis was performed on a panel of 78 genes (microphthalmia, anophthalmia, and coloboma panel), and a homozygous likely pathogenic variant was identified in the SIX6 gene, resulting in the loss of the initiator methionine. Thus, our report expands the phenotypic spectrum of SIX6-related disorders.

14.
Mol Genet Metab ; 137(1-2): 164-172, 2022.
Article in English | MEDLINE | ID: mdl-36087504

ABSTRACT

BACKGROUND: The Morquio A Registry Study (MARS) is an ongoing, multinational, observational study of patients with MPS IVA. Key objectives of MARS are to characterize the heterogeneity and natural history of disease and to evaluate long-term effectiveness and safety of elosulfase alfa enzyme replacement therapy (ERT). Enrollment began in September 2014; data on medical history, clinical outcomes, and safety assessments are collected as part of routine care. RESULTS: As of February 2021, 381 subjects from 17 countries had enrolled in MARS: 58 ERT-naïve subjects and 323 ERT-treated subjects (≥1 infusion), with a mean ERT exposure of 5.5 years (SD 2.8) and median age at first ERT treatment of 9.8 years. ERT-treated subjects were younger at diagnosis (median 3.4 vs 6.5 years) relative to ERT-naïve subjects. Among ERT-treated subjects, urinary keratan sulfate (uKS) levels declined from pre-ERT baseline to last follow-up on treatment (mean % change [95% confidence interval]: -52.5% [-57.5%, -47.4%]; n = 115) and 6-min walk test distance remained stable (mean change: -6.1 [-27.6, 15.5] m; n = 131) over a mean follow-up of 5.5 years. Forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) increased in subjects who were < 18 years of age at ERT initiation (mean change: +0.3 [0.1, 0.4] L and + 0.4 [0.3, 0.5] L; mean follow-up: ∼6 years; n = 82) and were stable in subjects ≥18 years (mean change: 0.0 [-0.0, 0.1] L and 0.0 [-0.1, 0.1] L; mean follow-up: 4.6 years; n = 38). Overall, 148 (47.1%) ERT-treated subjects experienced ≥1 adverse event (AE) and 110 subjects (35%) reported ≥1 serious AE. Drug-related AEs were reported in 39 (12.4%) subjects; the most common were hypersensitivity (9 subjects [2.9%]), urticaria (8 subjects [2.5%]), and pyrexia (7 subjects [2.2%]). CONCLUSIONS: MARS is the longest and largest observational study of MPS IVA patients to date, with a heterogenous population that is representative of the MPS IVA population overall. Data collected over the first 6 years of MARS provide real-world evidence for long-term stabilization of endurance and respiratory function among ERT-treated patients, with no new safety concerns identified.


Subject(s)
Mucopolysaccharidosis IV , Humans , Child , Keratan Sulfate/urine , Double-Blind Method , Enzyme Replacement Therapy/adverse effects , Registries
15.
Int J Mol Sci ; 23(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35887345

ABSTRACT

JARID2 (Jumonji, AT Rich Interactive Domain 2) pathogenic variants cause a neurodevelopmental syndrome, that is characterized by developmental delay, cognitive impairment, hypotonia, autistic features, behavior abnormalities and dysmorphic facial features. JARID2 encodes a transcriptional repressor protein that regulates the activity of various histone methyltransferase complexes. However, the molecular etiology is not fully understood, and JARID2-neurodevelopmental syndrome may vary in its typical clinical phenotype. In addition, the detection of variants of uncertain significance (VUSs) often results in a delay of final diagnosis which could hamper the appropriate care. In this study we aim to detect a specific and sensitive DNA methylation signature for JARID2-neurodevelopmental syndrome. Peripheral blood DNA methylation profiles from 56 control subjects, 8 patients with (likely) pathogenic JARID2 variants and 3 patients with JARID2 VUSs were analyzed. DNA methylation analysis indicated a clear and robust separation between patients with (likely) pathogenic variants and controls. A binary model capable of classifying patients with the JARID2-neurodevelopmental syndrome was constructed on the basis of the identified episignature. Patients carrying VUSs clustered with the control group. We identified a distinct DNA methylation signature associated with JARID2-neurodevelopmental syndrome, establishing its utility as a biomarker for this syndrome and expanding the EpiSign diagnostic test.


Subject(s)
DNA Methylation , Polycomb Repressive Complex 2 , Humans , Nucleotide Motifs , Phenotype , Polycomb Repressive Complex 2/genetics , Protein Processing, Post-Translational , Syndrome
16.
Mov Disord ; 37(10): 2139-2146, 2022 10.
Article in English | MEDLINE | ID: mdl-35876425

ABSTRACT

BACKGROUND: Despite advances in next generation sequencing technologies, the identification of variants of uncertain significance (VUS) can often hinder definitive diagnosis in patients with complex neurodevelopmental disorders. OBJECTIVE: The objective of this study was to identify and characterize the underlying cause of disease in a family with two children with severe developmental delay associated with generalized dystonia and episodic status dystonicus, chorea, epilepsy, and cataracts. METHODS: Candidate genes identified by autozygosity mapping and whole-exome sequencing were characterized using cellular and vertebrate model systems. RESULTS: Homozygous variants were found in three candidate genes: MED27, SLC6A7, and MPPE1. Although the patients had features of MED27-related disorder, the SLC6A7 and MPPE1 variants were functionally investigated. SLC6A7 variant in vitro overexpression caused decreased proline transport as a result of reduced cell-surface expression, and zebrafish knockdown of slc6a7 exhibited developmental delay and fragile motor neuron morphology that could not be rescued by L-proline transporter-G396S RNA. Lastly, patient fibroblasts displayed reduced cell-surface expression of glycophosphatidylinositol-anchored proteins linked to MPPE1 dysfunction. CONCLUSIONS: We report a family harboring a homozygous MED27 variant with additional loss-of-function SLC6A7 and MPPE1 gene variants, which potentially contribute to a blended phenotype caused by multilocus pathogenic variants. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Dystonia , Dystonic Disorders , Movement Disorders , Neurodevelopmental Disorders , Animals , Dystonia/diagnosis , Dystonia/genetics , Dystonic Disorders/genetics , Movement Disorders/genetics , Neurodevelopmental Disorders/genetics , Proline , RNA , Zebrafish/genetics
17.
Am J Physiol Cell Physiol ; 323(2): C536-C549, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35759430

ABSTRACT

The extracellular matrix is an intricate and essential network of proteins and nonproteinaceous components that provide a conducive microenvironment for cells to regulate cell function, differentiation, and survival. Fibronectin is one key component in the extracellular matrix that participates in determining cell fate and function crucial for normal vertebrate development. Fibronectin undergoes time-dependent expression patterns during stem cell differentiation, providing a unique stem cell niche. Mutations in fibronectin have been recently identified to cause a rare form of skeletal dysplasia with scoliosis and abnormal growth plates. Even though fibronectin has been extensively analyzed in developmental processes, the functional role and importance of this protein and its various isoforms in skeletal development remain less understood. This review attempts to provide a concise and critical overview of the role of fibronectin isoforms in cartilage and bone physiology and associated pathologies. This will facilitate a better understanding of the possible mechanisms through which fibronectin exerts its regulatory role on cellular differentiation during skeletal development. The review discusses the consequences of mutations in fibronectin leading to corner fracture type spondylometaphyseal dysplasia and presents a new outlook toward matrix-mediated molecular pathways in relation to therapeutic and clinical relevance.


Subject(s)
Fibronectins , Osteochondrodysplasias , Cell Differentiation/genetics , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Fibronectins/genetics , Fibronectins/metabolism , Humans , Osteochondrodysplasias/genetics , Osteochondrodysplasias/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism
18.
JCI Insight ; 7(10)2022 05 23.
Article in English | MEDLINE | ID: mdl-35603789

ABSTRACT

The eukaryotic CDC45/MCM2-7/GINS (CMG) helicase unwinds the DNA double helix during DNA replication. The GINS subcomplex is required for helicase activity and is, therefore, essential for DNA replication and cell viability. Here, we report the identification of 7 individuals from 5 unrelated families presenting with a Meier-Gorlin syndrome-like (MGS-like) phenotype associated with hypomorphic variants of GINS3, a gene not previously associated with this syndrome. We found that MGS-associated GINS3 variants affecting aspartic acid 24 (D24) compromised cell proliferation and caused accumulation of cells in S phase. These variants shortened the protein half-life, altered key protein interactions at the replisome, and negatively influenced DNA replication fork progression. Yeast expressing MGS-associated variants of PSF3 (the yeast GINS3 ortholog) also displayed impaired growth, S phase progression defects, and decreased Psf3 protein stability. We further showed that mouse embryos homozygous for a D24 variant presented intrauterine growth retardation and did not survive to birth, and that fibroblasts derived from these embryos displayed accelerated cellular senescence. Taken together, our findings implicate GINS3 in the pathogenesis of MGS and support the notion that hypomorphic variants identified in this gene impaired cell and organismal growth by compromising DNA replication.


Subject(s)
Micrognathism , Saccharomyces cerevisiae , Animals , Chromosomal Proteins, Non-Histone , Congenital Microtia , DNA Replication/genetics , Growth Disorders , Humans , Mice , Micrognathism/genetics , Minichromosome Maintenance Proteins/genetics , Patella/abnormalities
19.
Genet Med ; 24(6): 1283-1296, 2022 06.
Article in English | MEDLINE | ID: mdl-35346573

ABSTRACT

PURPOSE: Common diagnostic next-generation sequencing strategies are not optimized to identify inherited variants in genes associated with dominant neurodevelopmental disorders as causal when the transmitting parent is clinically unaffected, leaving a significant number of cases with neurodevelopmental disorders undiagnosed. METHODS: We characterized 21 families with inherited heterozygous missense or protein-truncating variants in CHD3, a gene in which de novo variants cause Snijders Blok-Campeau syndrome. RESULTS: Computational facial and Human Phenotype Ontology-based comparisons showed that the phenotype of probands with inherited CHD3 variants overlaps with the phenotype previously associated with de novo CHD3 variants, whereas heterozygote parents are mildly or not affected, suggesting variable expressivity. In addition, similarly reduced expression levels of CHD3 protein in cells of an affected proband and of healthy family members with a CHD3 protein-truncating variant suggested that compensation of expression from the wild-type allele is unlikely to be an underlying mechanism. Notably, most inherited CHD3 variants were maternally transmitted. CONCLUSION: Our results point to a significant role of inherited variation in Snijders Blok-Campeau syndrome, a finding that is critical for correct variant interpretation and genetic counseling and warrants further investigation toward understanding the broader contributions of such variation to the landscape of human disease.


Subject(s)
DNA Helicases , Mi-2 Nucleosome Remodeling and Deacetylase Complex , Neurodevelopmental Disorders , DNA Helicases/genetics , Heterozygote , Humans , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Neurodevelopmental Disorders/genetics , Phenotype , Syndrome
20.
Clin Invest Med ; 45(1): E5-8, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35339122

ABSTRACT

Dr. Philippe Campeau is the recipient of the 2021 Canadian Society for Clinical Investigation (CSCI) Joe Doupe Young Investigator Award-given in recognition of his early career achievements as a clinician-scientist and his mentorship to trainees. In honor of his success, this article discusses Dr. Campeau's journey to a career as clinician-scientist and his successes and challenges along the way. In answering these questions, Dr. Campeau shares encouraging insights and advice for clinician-scientist trainees who are building the foundations of their own careers in medicine and research.


Subject(s)
Biomedical Research , Medicine , Physicians , Canada , Humans , Mentors
SELECTION OF CITATIONS
SEARCH DETAIL
...