Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
JCI Insight ; 8(21)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37751291

ABSTRACT

New medicines are urgently required to treat the fatal neuromuscular disease Duchenne muscular dystrophy (DMD). Dimethyl fumarate (DMF) is a potent immunomodulatory small molecule nuclear erythroid 2-related factor 2 activator with current clinical utility in the treatment of multiple sclerosis and psoriasis that could be effective for DMD and rapidly translatable. Here, we tested 2 weeks of daily 100 mg/kg DMF versus 5 mg/kg standard-care prednisone (PRED) treatment in juvenile mdx mice with early symptomatic DMD. Both drugs modulated seed genes driving the DMD disease program and improved force production in fast-twitch muscle. However, only DMF showed pro-mitochondrial effects, protected contracting muscles from fatigue, improved histopathology, and augmented clinically compatible muscle function tests. DMF may be a more selective modulator of the DMD disease program than PRED, warranting follow-up longitudinal studies to evaluate disease-modifying impact.


Subject(s)
Dimethyl Fumarate , Muscular Dystrophy, Duchenne , Animals , Mice , Mice, Inbred mdx , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Prednisone , Muscles/pathology
2.
Semin Cell Dev Biol ; 143: 3-16, 2023 07 15.
Article in English | MEDLINE | ID: mdl-35351374

ABSTRACT

Endurance exercise is well established to increase mitochondrial content and function in skeletal muscle, a process termed mitochondrial biogenesis. Current understanding is that exercise initiates skeletal muscle mitochondrial remodeling via modulation of cellular nutrient, energetic and contractile stress pathways. These subtle changes in the cellular milieu are sensed by numerous transduction pathways that serve to initiate and coordinate an increase in mitochondrial gene transcription and translation. The result of these acute signaling events is the promotion of growth and assembly of mitochondria, coupled to a greater capacity for aerobic ATP provision in skeletal muscle. The aim of this review is to highlight the acute metabolic events induced by endurance exercise and the subsequent molecular pathways that sense this transient change in cellular homeostasis to drive mitochondrial adaptation and remodeling.


Subject(s)
Exercise , Mitochondria , Mitochondria/metabolism , Exercise/physiology , Muscle, Skeletal/metabolism , Adaptation, Physiological/physiology , Homeostasis
3.
J Cachexia Sarcopenia Muscle ; 13(1): 42-54, 2022 02.
Article in English | MEDLINE | ID: mdl-34879436

ABSTRACT

Acute myeloid leukaemia (AML) is a haematological malignancy with poor survival odds, particularly in the older (>65 years) population, in whom it is most prevalent. Treatment consists of induction and consolidation chemotherapy to remit the cancer followed by potentially curative haematopoietic cell transplantation. These intense treatments are debilitating and increase the risk of mortality. Patient stratification is used to mitigate this risk and considers a variety of factors, including body mass, to determine whether a patient is suitable for any or all treatment options. Skeletal muscle mass, the primary constituent of the body lean mass, may be a better predictor of patient suitability for, and outcomes of, AML treatment. Yet skeletal muscle is compromised by a variety of factors associated with AML and its clinical treatment consistent with cachexia, a life-threatening body wasting syndrome. Cachectic muscle wasting is associated with both cancer and anticancer chemotherapy. Although not traditionally associated with haematological cancers, cachexia is observed in AML and can have dire consequences. In this review, we discuss the importance of addressing skeletal muscle mass and cachexia within the AML clinical landscape in view of improving survivability of this disease.


Subject(s)
Leukemia, Myeloid, Acute , Wasting Syndrome , Cachexia/complications , Cachexia/therapy , Humans , Leukemia, Myeloid, Acute/complications , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Wasting Syndrome/epidemiology , Wasting Syndrome/etiology , Wasting Syndrome/therapy
4.
Cancers (Basel) ; 13(14)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34298829

ABSTRACT

Cancer cachexia is a debilitating multi-factorial wasting syndrome characterised by severe skeletal muscle wasting and dysfunction (i.e., myopathy). In the oncology setting, cachexia arises from synergistic insults from both cancer-host interactions and chemotherapy-related toxicity. The majority of studies have surrounded the cancer-host interaction side of cancer cachexia, often overlooking the capability of chemotherapy to induce cachectic myopathy. Accumulating evidence in experimental models of cachexia suggests that some chemotherapeutic agents rapidly induce cachectic myopathy, although the underlying mechanisms responsible vary between agents. Importantly, we highlight the capacity of specific chemotherapeutic agents to induce cachectic myopathy, as not all chemotherapies have been evaluated for cachexia-inducing properties-alone or in clinically compatible regimens. Furthermore, we discuss the experimental evidence surrounding therapeutic strategies that have been evaluated in chemotherapy-induced cachexia models, with particular focus on exercise interventions and adjuvant therapeutic candidates targeted at the mitochondria.

5.
Pharmaceuticals (Basel) ; 14(5)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067869

ABSTRACT

Skeletal myopathy encompasses both atrophy and dysfunction and is a prominent event in cancer and chemotherapy-induced cachexia. Here, we investigate the effects of a chemotherapeutic agent, 5-fluorouracil (5FU), on skeletal muscle mass and function, and whether small-molecule therapeutic candidate, BGP-15, could be protective against the chemotoxic challenge exerted by 5FU. Additionally, we explore the molecular signature of 5FU treatment. Male Balb/c mice received metronomic tri-weekly intraperitoneal delivery of 5FU (23 mg/kg), with and without BGP-15 (15 mg/kg), 6 times in total over a 15 day treatment period. We demonstrated that neither 5FU, nor 5FU combined with BGP-15, affected body composition indices, skeletal muscle mass or function. Adjuvant BGP-15 treatment did, however, prevent the 5FU-induced phosphorylation of p38 MAPK and p65 NF-B subunit, signalling pathways involved in cell stress and inflammatory signalling, respectively. This as associated with mitoprotection. 5FU reduced the expression of the key cytoskeletal proteins, desmin and dystrophin, which was not prevented by BGP-15. Combined, these data show that metronomic delivery of 5FU does not elicit physiological consequences to skeletal muscle mass and function but is implicit in priming skeletal muscle with a molecular signature for myopathy. BGP-15 has modest protective efficacy against the molecular changes induced by 5FU.

6.
Am J Physiol Cell Physiol ; 320(6): C987-C999, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33881936

ABSTRACT

Polyamines have been shown to be absolutely required for protein synthesis and cell growth. The serine/threonine kinase, the mechanistic target of rapamycin complex 1 (mTORC1), also plays a fundamental role in the regulation of protein turnover and cell size, including in skeletal muscle, where mTORC1 is sufficient to increase protein synthesis and muscle fiber size, and is necessary for mechanical overload-induced muscle hypertrophy. Recent evidence suggests that mTORC1 may regulate the polyamine metabolic pathway, however, there is currently no evidence in skeletal muscle. This study examined changes in polyamine pathway proteins during muscle hypertrophy induced by mechanical overload (7 days), with and without the mTORC1 inhibitor, rapamycin, and during muscle atrophy induced by food deprivation (48 h) and denervation (7 days) in mice. Mechanical overload induced an increase in mTORC1 signaling, protein synthesis and muscle mass, and these were associated with rapamycin-sensitive increases in adenosylmethione decarboxylase 1 (Amd1), spermidine synthase (SpdSyn), and c-Myc. Food deprivation decreased mTORC1 signaling, protein synthesis, and muscle mass, accompanied by a decrease in spermidine/spermine acetyltransferase 1 (Sat1). Denervation, resulted increased mTORC1 signaling and protein synthesis, and decreased muscle mass, which was associated with an increase in SpdSyn, spermine synthase (SpmSyn), and c-Myc. Combined, these data show that polyamine pathway enzymes are differentially regulated in models of altered mechanical and metabolic stress, and that Amd1 and SpdSyn are, in part, regulated in a mTORC1-dependent manner. Furthermore, these data suggest that polyamines may play a role in the adaptive response to stressors in skeletal muscle.


Subject(s)
Hypertrophy/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Polyamines/metabolism , Signal Transduction/physiology , Acetyltransferases/metabolism , Adenosylmethionine Decarboxylase/metabolism , Animals , Female , Mice , Muscle Proteins/metabolism , Spermidine Synthase/metabolism
7.
Orphanet J Rare Dis ; 16(1): 117, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33663533

ABSTRACT

BACKGROUND: Pharmacological corticosteroid therapy is the standard of care in Duchenne Muscular Dystrophy (DMD) that aims to control symptoms and slow disease progression through potent anti-inflammatory action. However, a major concern is the significant adverse effects associated with long term-use. MAIN: This review discusses the pros and cons of standard of care treatment for DMD and compares it to novel data generated with the new-wave dissociative corticosteroid, vamorolone. The current status of experimental anti-inflammatory pharmaceuticals is also reviewed, with insights regarding alternative drugs that could provide therapeutic advantage. CONCLUSIONS: Although novel dissociative steroids may be superior substitutes to corticosteroids, other potential therapeutics should be explored. Repurposing or developing novel pharmacological therapies capable of addressing the many pathogenic features of DMD in addition to anti-inflammation could elicit greater therapeutic advantages.


Subject(s)
Muscular Dystrophy, Duchenne , Adrenal Cortex Hormones/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Glucocorticoids/therapeutic use , Humans , Muscular Dystrophy, Duchenne/drug therapy , Standard of Care
8.
Curr Med Res Opin ; 37(3): 465-467, 2021 03.
Article in English | MEDLINE | ID: mdl-33331789

ABSTRACT

Adenylosuccinic acid (ASA) modifies Duchenne muscular dystrophy (DMD) progression in dystrophic mdx mice and human DMD patients. Despite an established role for ASA in augmenting metabolism and cellular energy homeostasis, our previous data suggests an undiscovered ulterior mode of action capable of modifying DMD disease course. Here, we identify ASA as a novel inducer of nuclear factor erythroid 2-related factor-2 (Nrf2), master regulator of the antioxidant and cytoprotective response to cell stress.


Subject(s)
Muscular Dystrophy, Duchenne , Adenosine Monophosphate/analogs & derivatives , Animals , Disease Models, Animal , Humans , Mice , Mice, Inbred mdx , Muscle, Skeletal , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , NF-E2-Related Factor 2
9.
Cells ; 9(12)2020 12 10.
Article in English | MEDLINE | ID: mdl-33322031

ABSTRACT

Myostatin inhibition therapy has held much promise for the treatment of muscle wasting disorders. This is particularly true for the fatal myopathy, Duchenne Muscular Dystrophy (DMD). Following on from promising pre-clinical data in dystrophin-deficient mice and dogs, several clinical trials were initiated in DMD patients using different modality myostatin inhibition therapies. All failed to show modification of disease course as dictated by the primary and secondary outcome measures selected: the myostatin inhibition story, thus far, is a failed clinical story. These trials have recently been extensively reviewed and reasons why pre-clinical data collected in animal models have failed to translate into clinical benefit to patients have been purported. However, the biological mechanisms underlying translational failure need to be examined to ensure future myostatin inhibitor development endeavors do not meet with the same fate. Here, we explore the biology which could explain the failed translation of myostatin inhibitors in the treatment of DMD.


Subject(s)
Antibodies/therapeutic use , Muscular Dystrophy, Duchenne/drug therapy , Myostatin/antagonists & inhibitors , Animals , Antibodies/pharmacology , Clinical Trials as Topic , Humans , Mice , Muscle, Skeletal/drug effects , Muscular Dystrophy, Duchenne/genetics , Treatment Failure
10.
Cancers (Basel) ; 12(12)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348673

ABSTRACT

Chemotherapy-induced muscle wasting and dysfunction is a contributing factor to cachexia alongside cancer and increases the risk of morbidity and mortality. Here, we investigate the effects of the chemotherapeutic agent irinotecan (IRI) on skeletal muscle mass and function and whether BGP-15 (a poly-(ADP-ribose) polymerase-1 (PARP-1) inhibitor and heat shock protein co-inducer) adjuvant therapy could protect against IRI-induced skeletal myopathy. Healthy 6-week-old male Balb/C mice (n = 24; 8/group) were treated with six intraperitoneal injections of either vehicle, IRI (30 mg/kg) or BGP-15 adjuvant therapy (IRI+BGP; 15 mg/kg) over two weeks. IRI reduced lean and tibialis anterior mass, which were attenuated by IRI+BGP treatment. Remarkably, IRI reduced muscle protein synthesis, while IRI+BGP reduced protein synthesis further. These changes occurred in the absence of a change in crude markers of mammalian/mechanistic target of rapamycin (mTOR) Complex 1 (mTORC1) signaling and protein degradation. Interestingly, the cytoskeletal protein dystrophin was reduced in both IRI- and IRI+BGP-treated mice, while IRI+BGP treatment also decreased ß-dystroglycan, suggesting significant remodeling of the cytoskeleton. IRI reduced absolute force production of the soleus and extensor digitorum longus (EDL) muscles, while IRI+BGP rescued absolute force production of the soleus and strongly trended to rescue force output of the EDL (p = 0.06), which was associated with improvements in mass. During the fatiguing stimulation, IRI+BGP-treated EDL muscles were somewhat susceptible to rupture at the musculotendinous junction, likely due to BGP-15's capacity to maintain the rate of force development within a weakened environment characterized by significant structural remodeling. Our paradoxical data highlight that BGP-15 has some therapeutic advantage by attenuating IRI-induced skeletal myopathy; however, its effects on the remodeling of the cytoskeleton and extracellular matrix, which appear to make fast-twitch muscles more prone to tearing during contraction, could suggest the induction of muscular dystrophy and, thus, require further characterization.

11.
Sci Rep ; 10(1): 15044, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32973229

ABSTRACT

The purpose of this study was to determine whether (1) sodium nitrate (SN) treatment progressed or alleviated doxorubicin (DOX)-induced cachexia and muscle wasting; and (2) if a more-clinically relevant low-dose metronomic (LDM) DOX treatment regimen compared to the high dosage bolus commonly used in animal research, was sufficient to induce cachexia in mice. Six-week old male Balb/C mice (n = 16) were treated with three intraperitoneal injections of either vehicle (0.9% NaCl; VEH) or DOX (4 mg/kg) over one week. To test the hypothesis that sodium nitrate treatment could protect against DOX-induced symptomology, a group of mice (n = 8) were treated with 1 mM NaNO3 in drinking water during DOX (4 mg/kg) treatment (DOX + SN). Body composition indices were assessed using echoMRI scanning, whilst physical and metabolic activity were assessed via indirect calorimetry, before and after the treatment regimen. Skeletal and cardiac muscles were excised to investigate histological and molecular parameters. LDM DOX treatment induced cachexia with significant impacts on both body and lean mass, and fatigue/malaise (i.e. it reduced voluntary wheel running and energy expenditure) that was associated with oxidative/nitrostative stress sufficient to induce the molecular cytotoxic stress regulator, nuclear factor erythroid-2-related factor 2 (NRF-2). SN co-treatment afforded no therapeutic potential, nor did it promote the wasting of lean tissue. Our data re-affirm a cardioprotective effect for SN against DOX-induced collagen deposition. In our mouse model, SN protected against LDM DOX-induced cardiac fibrosis but had no effect on cachexia at the conclusion of the regimen.


Subject(s)
Cachexia/chemically induced , Doxorubicin/administration & dosage , Doxorubicin/adverse effects , Nitrates/pharmacology , Administration, Metronomic , Animals , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/adverse effects , Body Composition/drug effects , Cachexia/drug therapy , Cachexia/physiopathology , Calorimetry , Cardiotonic Agents/pharmacology , Dietary Supplements , Disease Models, Animal , Dose-Response Relationship, Drug , Heart/drug effects , Male , Mice, Inbred BALB C , Mitochondria, Muscle/drug effects , Mitochondria, Muscle/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Myocardium/pathology , Oxidation-Reduction
12.
Front Physiol ; 8: 391, 2017.
Article in English | MEDLINE | ID: mdl-28642718

ABSTRACT

Gastrointestinal dysfunction is a common side-effect of chemotherapy leading to dose reductions and treatment delays. These side-effects may persist up to 10 years post-treatment. A topoisomerase I inhibitor, irinotecan (IRI), commonly used for the treatment of colorectal cancer, is associated with severe acute and delayed-onset diarrhea. The long-term effects of IRI may be due to damage to enteric neurons innervating the gastrointestinal tract and controlling its functions. Balb/c mice received intraperitoneal injections of IRI (30 mg/kg-1) 3 times a week for 14 days, sham-treated mice received sterile water (vehicle) injections. In vivo analysis of gastrointestinal transit via serial x-ray imaging, facal water content, assessment of gross morphological damage and immunohistochemical analysis of myenteric neurons were performed at 3, 7 and 14 days following the first injection and at 7 days post-treatment. Ex vivo colonic motility was analyzed at 14 days following the first injection and 7 days post-treatment. Mucosal damage and inflammation were found following both short and long-term treatment with IRI. IRI-induced neuronal loss and increases in the number and proportion of ChAT-IR neurons and the density of VAChT-IR fibers were associated with changes in colonic motility, gastrointestinal transit and fecal water content. These changes persisted in post-treatment mice. Taken together this work has demonstrated for the first time that IRI-induced inflammation, neuronal loss and altered cholinergic expression is associated with the development of IRI-induced long-term gastrointestinal dysfunction and diarrhea.

13.
Front Pharmacol ; 8: 137, 2017.
Article in English | MEDLINE | ID: mdl-28443020

ABSTRACT

Chemotherapy is a leading intervention against cancer. Albeit highly effective, chemotherapy has a multitude of deleterious side-effects including skeletal muscle wasting and fatigue, which considerably reduces patient quality of life and survivability. As such, a defense against chemotherapy-induced skeletal muscle dysfunction is required. Here we investigate the effects of oxaliplatin (OXA) treatment in mice on the skeletal muscle and mitochondria, and the capacity for the Poly ADP-ribose polymerase (PARP) inhibitor, BGP-15, to ameliorate any pathological side-effects induced by OXA. To do so, we investigated the effects of 2 weeks of OXA (3 mg/kg) treatment with and without BGP-15 (15 mg/kg). OXA induced a 15% (p < 0.05) reduction in lean tissue mass without significant changes in food consumption or energy expenditure. OXA treatment also altered the muscle architecture, increasing collagen deposition, neutral lipid and Ca2+ accumulation; all of which were ameliorated with BGP-15 adjunct therapy. Here, we are the first to show that OXA penetrates the mitochondria, and, as a possible consequence of this, increases mtROS production. These data correspond with reduced diameter of isolated FDB fibers and shift in the fiber size distribution frequency of TA to the left. There was a tendency for reduction in intramuscular protein content, albeit apparently not via Murf1 (atrophy)- or p62 (autophagy)- dependent pathways. BGP-15 adjunct therapy protected against increased ROS production and improved mitochondrial viability 4-fold and preserved fiber diameter and number. Our study highlights BGP-15 as a potential adjunct therapy to address chemotherapy-induced skeletal muscle and mitochondrial pathology.

SELECTION OF CITATIONS
SEARCH DETAIL
...