Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Genes (Basel) ; 12(8)2021 07 25.
Article in English | MEDLINE | ID: mdl-34440302

ABSTRACT

We report four allelic variants (three novel) in three genes previously established as causal for hypopituitarism or related disorders. A novel homozygous variant in the growth hormone gene, GH1 c.171delT (p.Phe 57Leufs*43), was found in a male patient with severe isolated growth hormone deficiency (IGHD) born to consanguineous parents. A hemizygous SOX3 allelic variant (p.Met304Ile) was found in a male patient with IGHD and hypoplastic anterior pituitary. YASARA, a tool to evaluate protein stability, suggests that p.Met304Ile destabilizes the SOX3 protein (ΔΔG = 2.49 kcal/mol). A rare, heterozygous missense variant in the TALE homeobox protein gene, TGIF1 (c.268C>T:p.Arg90Cys) was found in a patient with combined pituitary hormone deficiency (CPHD), diabetes insipidus, and syndromic features of holoprosencephaly (HPE). This variant was previously reported in a patient with severe holoprosencephaly and shown to affect TGIF1 function. A novel heterozygous TGIF1 variant (c.82T>C:p.Ser28Pro) was identified in a patient with CPHD, pituitary aplasia and ectopic posterior lobe. Both TGIF1 variants have an autosomal dominant pattern of inheritance with incomplete penetrance. In conclusion, we have found allelic variants in three genes in hypopituitarism patients. We discuss these variants and associated patient phenotypes in relation to previously reported variants in these genes, expanding our knowledge of the phenotypic spectrum in patient populations.


Subject(s)
Alleles , Homeodomain Proteins/genetics , Human Growth Hormone/genetics , Hypopituitarism/genetics , Phenotype , Repressor Proteins/genetics , SOXB1 Transcription Factors/genetics , Child , Child, Preschool , Female , Genotype , Humans , Hypopituitarism/diagnostic imaging , Infant , Magnetic Resonance Imaging , Male , Mutation , Pedigree
2.
J Clin Endocrinol Metab ; 106(7): 1956-1976, 2021 06 16.
Article in English | MEDLINE | ID: mdl-33729509

ABSTRACT

PURPOSE: Congenital hypopituitarism (CH) can present in isolation or with other birth defects. Mutations in multiple genes can cause CH, and the use of a genetic screening panel could establish the prevalence of mutations in known and candidate genes for this disorder. It could also increase the proportion of patients that receive a genetic diagnosis. METHODS: We conducted target panel genetic screening using single-molecule molecular inversion probes sequencing to assess the frequency of mutations in known hypopituitarism genes and new candidates in Argentina. We captured genomic deoxyribonucleic acid from 170 pediatric patients with CH, either alone or with other abnormalities. We performed promoter activation assays to test the functional effects of patient variants in LHX3 and LHX4. RESULTS: We found variants classified as pathogenic, likely pathogenic, or with uncertain significance in 15.3% of cases. These variants were identified in known CH causative genes (LHX3, LHX4, GLI2, OTX2, HESX1), in less frequently reported genes (FOXA2, BMP4, FGFR1, PROKR2, PNPLA6) and in new candidate genes (BMP2, HMGA2, HNF1A, NKX2-1). CONCLUSION: In this work, we report the prevalence of mutations in known CH genes in Argentina and provide evidence for new candidate genes. We show that CH is a genetically heterogeneous disease with high phenotypic variation and incomplete penetrance, and our results support the need for further gene discovery for CH. Identifying population-specific pathogenic variants will improve the capacity of genetic data to predict eventual clinical outcomes.


Subject(s)
Endocrine System Diseases/genetics , Genetic Testing/statistics & numerical data , Hypopituitarism/genetics , Mutation/genetics , Adolescent , Adult , Argentina , Child , Child, Preschool , Female , Genetic Heterogeneity , Humans , Infant , LIM-Homeodomain Proteins/genetics , Male , Phenotype , Polymorphism, Single Nucleotide , Transcription Factors/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL