Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 90(14): 8362-8369, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29894163

ABSTRACT

The goal of this study was to precisely and unambiguously identify foreign particles in human tissues using a combination of polarized light microscopy and Raman microscopy, which provides chemical composition and microstructural characterization of complex materials with submicrometer spatial resolution. This identification for patient care and research has been traditionally studied using polarized light microscopy, electron microscopy with X-ray analysis, and electron diffraction, all with some limitations. We designed a model system of stained and unstained cells that contained birefringent talc particles and systematically investigated the influence of slide and coverslip materials, laser wavelengths, and mounting media on the Raman spectra obtained. Hematoxylin and eosin stained slides did not produce useful results because of fluorescence interference from the stains. Unstained cell samples prepared with standard slides and coverslips produce high quality Raman spectra when excited at 532 nm; the spectra are uniquely assigned to talc. We also obtain high quality Raman spectra specific for talc in unstained tissue samples (pleural tissue following talc pleurodesis and ovarian tissue following long-term perineal talc exposure). Raman microscopy is sufficiently sensitive and compositionally selective to identify particles as small as one micrometer in diameter. Raman spectra have been catalogued for thousands of substances, which suggests that this approach is likely to be successful in identifying other particles of interest in tissues, potentially making Raman microscopy a powerful new tool in pathology.


Subject(s)
Macrophages/ultrastructure , Microscopy, Polarization/methods , Nonlinear Optical Microscopy/methods , Ovary/ultrastructure , Pleura/ultrastructure , Talc/analysis , Animals , Female , Humans , Mice , Models, Molecular , Particle Size , Pleurodesis , RAW 264.7 Cells
2.
J Phys Chem A ; 113(33): 9337-47, 2009 Aug 20.
Article in English | MEDLINE | ID: mdl-19630422

ABSTRACT

VUV absorbance and index of refraction data for a series of linear and cyclic alkanes have been collected in order to understand the relationship between the electronic excitation wavelength (or absorbance edge), index of refraction, and molecular structure. The absorbance edge and index for a homologous series of both linear and cyclic alkanes increase with increasing carbon number. The optical properties of complex cycloalkanes do not vary predictably with increasing carbon number but instead depend on variations in the hydrocarbon structure in addition to hydrocarbon size. An understanding of the fundamental optical properties of this class of compounds is directly applicable to the identification of a high index and low-absorbance fluid for 193 nm immersion lithography.

SELECTION OF CITATIONS
SEARCH DETAIL
...