Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38069269

ABSTRACT

Caveolin-1 (CAV1) is a membrane-bound protein that suppresses tumor development yet also promotes metastasis. E-cadherin is important in CAV1-dependent tumor suppression and prevents CAV1-enhanced lung metastasis. Here, we used murine B16F10 and human A375 melanoma cells with low levels of endogenous CAV1 and E-cadherin to unravel how co-expression of E-cadherin modulates CAV1 function in vitro and in vivo in WT C57BL/6 or Rag-/- immunodeficient mice and how a pro-inflammatory environment generated by treating cells with prostaglandin E2 (PGE2) alters CAV1 function in the presence of E-cadherin. CAV1 expression augmented migration, invasion, and metastasis of melanoma cells, and these effects were abolished via transient co-expression of E-cadherin. Importantly, exposure of cells to PGE2 reverted the effects of E-cadherin expression and increased CAV1 phosphorylation on tyrosine-14 and metastasis. Moreover, PGE2 administration blocked the ability of the CAV1/E-cadherin complex to prevent tumor formation. Therefore, our results support the notion that PGE2 can override the tumor suppressor potential of the E-cadherin/CAV1 complex and that CAV1 released from the complex is phosphorylated on tyrosine-14 and promotes migration/invasion/metastasis. These observations provide direct evidence showing how a pro-inflammatory environment caused here via PGE2 administration can convert a potent tumor suppressor complex into a promoter of malignant cell behavior.


Subject(s)
Dinoprostone , Melanoma, Experimental , Animals , Humans , Mice , Cadherins/metabolism , Caveolin 1/metabolism , Cell Line, Tumor , Cell Movement , Dinoprostone/pharmacology , Melanoma, Experimental/pathology , Mice, Inbred C57BL , Neoplasm Metastasis , Tyrosine/pharmacology
2.
Nanomedicine (Lond) ; 18(23): 1651-1668, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37929694

ABSTRACT

Background: Elevated expression of CAV1 in breast cancer increases tumor progression. Extracellular vesicles (EVs) from CAV1-expressing MDA-MB-231 breast cancer cells contain Tenascin C (TNC), but the relevance of TNC remained to be defined. Methods: EVs were characterized by nanotracking analysis, microscopy and western blotting. The uptake of EVs by cells was studied using flow cytometry. The effects of EVs on breast cancer cells were tested in migration, invasion, colony formation and in vivo assays. Results: EVs were taken up by cells; however, only those containing TNC promoted invasiveness. In vivo, EVs lacking TNC ceased to promote tumor growth. Conclusion: CAV1 and TNC contained in breast cancer cell-derived EVs were identified as proteins that favor progression of breast cancer.


Caveolin-1 (CAV1) is a protein that in breast cancer increases with disease progression. Extracellular vesicles (EVs) from breast cancer cells with CAV1 also contain Tenascin C (TNC) protein, but the importance of TNC remained to be defined. EVs were identified by size, microscopy and protein analysis. The effects of EVs on breast cancer cells were studied using cells and experiments in animals. CAV1 expression promotes TNC inclusion into EVs, which increased the aggressiveness of recipient breast cancer cells. In animals, only EVs with TNC increased features associated with cancer spread, while EVs lacking TNC reduced tumor growth.


Subject(s)
Breast Neoplasms , Caveolin 1 , Extracellular Vesicles , Tenascin , Humans , Cell Line, Tumor , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Caveolin 1/metabolism , Extracellular Vesicles/metabolism , Tenascin/metabolism , Animals , Mice , Mice, SCID , Disease Progression
3.
Neurooncol Adv ; 5(1): vdad067, 2023.
Article in English | MEDLINE | ID: mdl-37334166

ABSTRACT

Background: Infiltration of glioblastoma (GBM) throughout the brain leads to its inevitable recurrence following standard-of-care treatments, such as surgical resection, chemo-, and radiotherapy. A deeper understanding of the mechanisms invoked by GBM to infiltrate the brain is needed to develop approaches to contain the disease and reduce recurrence. The aim of this study was to discover mechanisms through which extracellular vesicles (EVs) released by GBM influence the brain microenvironment to facilitate infiltration, and to determine how altered extracellular matrix (ECM) deposition by glial cells might contribute to this. Methods: CRISPR was used to delete genes, previously established to drive carcinoma invasiveness and EV production, from patient-derived primary and GBM cell lines. We purified and characterized EVs released by these cells, assessed their capacity to foster pro-migratory microenvironments in mouse brain slices, and evaluated the contribution made by astrocyte-derived ECM to this. Finally, we determined how CRISPR-mediated deletion of genes, which we had found to control EV-mediated communication between GBM cells and astrocytes, influenced GBM infiltration when orthotopically injected into CD1-nude mice. Results: GBM cells expressing a p53 mutant (p53R273H) with established pro-invasive gain-of-function release EVs containing a sialomucin, podocalyxin (PODXL), which encourages astrocytes to deposit ECM with increased levels of hyaluronic acid (HA). This HA-rich ECM, in turn, promotes migration of GBM cells. Consistently, CRISPR-mediated deletion of PODXL opposes infiltration of GBM in vivo. Conclusions: This work describes several key components of an EV-mediated mechanism though which GBM cells educate astrocytes to support infiltration of the surrounding healthy brain tissue.

4.
Cancers (Basel) ; 13(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34572835

ABSTRACT

Cancer is a leading public health issue globally, and diagnosis is often associated with poor outcomes and reduced patient survival. One of the major contributors to the fatality resultant of cancer is the development of resistance to chemotherapy, known as chemoresistance. Furthermore, there are limitations in our ability to identify patients that will respond to therapy, versus patients that will develop relapse, and display limited or no response to treatment. This often leads to patients being subjected to multiple futile treatment cycles, and results in a reduction in their quality of life. Therefore, there is an urgent clinical need to develop tools to identify patients at risk of chemoresistance, and recent literature has suggested that small extracellular vesicles, known as exosomes, may be a vital source of information. Extracellular vesicles (EV) are membrane bound vesicles, involved in cell-cell communication, through the transfer of their cargo, which includes proteins, lipids, and miRNAs. A defined exploration strategy was performed in this systematic review in order to provide a compilation of key EV miRNAs which may be predictive of chemoresistance. We searched the PubMed, Science Direct, and Scopus databases using the following keywords: Extracellular vesicles OR exosomes OR EVs AND miRNA AND Chemotherapy OR Chemoresistance OR Cancer Recurrence from 2010 to 2020. We found 31 articles that reported key EV-associated miRNAs involved in cancer recurrence related to chemoresistance. Interestingly, multiple studies of the same tumor type identified different microRNAs, and few studies identified the same ones. Specifically, miR-21, miR-222, and miR-155 displayed roles in response to chemotherapy, and were found to be common in colorectal cancer, ovarian cancer, breast cancer, and diffuse large B cell lymphoma patients (DLBCL). miR-21 and miR-222 were found to favour the development of chemoresistance, whereas miR-155 exhibited a contrasting role, depending on the type of primary tumor. Whilst high levels of miR-155 were found to correlate with chemotherapy resistance in DLBCL, it was found to be predictive of an effective response towards chemotherapy in breast cancer. Thus, further research regarding the roles of these miRNAs would be beneficial in terms of designing novel tools to counteract the progression of cancer in a not-to-distant future.

5.
Cancers (Basel) ; 13(13)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34283059

ABSTRACT

Cancer remains a leading cause of death worldwide despite decades of intense efforts to understand the molecular underpinnings of the disease. To date, much of the focus in research has been on the cancer cells themselves and how they acquire specific traits during disease development and progression. However, these cells are known to secrete large numbers of extracellular vesicles (EVs), which are now becoming recognized as key players in cancer. EVs contain a large number of different molecules, including but not limited to proteins, mRNAs, and miRNAs, and they are actively secreted by many different cell types. In the last two decades, a considerable body of evidence has become available indicating that EVs play a very active role in cell communication. Cancer cells are heterogeneous, and recent evidence reveals that cancer cell-derived EV cargos can change the behavior of target cells. For instance, more aggressive cancer cells can transfer their "traits" to less aggressive cancer cells and convert them into more malignant tumor cells or, alternatively, eliminate those cells in a process referred to as "cell competition". This review discusses how EVs participate in the multistep acquisition of specific traits developed by tumor cells, which are referred to as "the hallmarks of cancer" defined by Hanahan and Weinberg. Moreover, as will be discussed, EVs play an important role in drug resistance, and these more recent advances may explain, at least in part, why pharmacological therapies are often ineffective. Finally, we discuss literature proposing the use of EVs for therapeutic and prognostic purposes in cancer.

6.
Cancers (Basel) ; 13(14)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34298602

ABSTRACT

Hypoxia is a key regulator of cancer progression and chemoresistance. Ambiguity remains about how cancer cells adapt to hypoxic microenvironments and transfer oncogenic factors to surrounding cells. In this study, we determined the effects of hypoxia on the bioactivity of sEVs in a panel of ovarian cancer (OvCar) cell lines. The data obtained demonstrate a varying degree of platinum resistance induced in OvCar cells when exposed to low oxygen tension (1% oxygen). Using quantitative mass spectrometry (Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectra, SWATH) and targeted multiple reaction monitoring (MRM), we identified a suite of proteins associated with glycolysis that change under hypoxic conditions in cells and sEVs. Interestingly, we identified a differential response to hypoxia in the OvCar cell lines and their secreted sEVs, highlighting the cells' heterogeneity. Proteins are involved in metabolic reprogramming such as glycolysis, including putative hexokinase (HK), UDP-glucuronosyltransferase 1-6 (UD16), and 6-phosphogluconolactonase (6 PGL), and their presence correlates with the induction of platinum resistance. Furthermore, when normoxic cells were exposed to sEVs from hypoxic cells, platinum-resistance increased significantly (p < 0.05). Altered chemoresistance was associated with changes in glycolysis and fatty acid synthesis. Finally, sEVs isolated from a clinical cohort (n = 31) were also found to be enriched in glycolysis-pathway proteins, especially in patients with recurrent disease. These data support the hypothesis that hypoxia induces changes in sEVs composition and bioactivity that confers carboplatin resistance on target cells. Furthermore, we propose that the expression of sEV-associated glycolysis-pathway proteins is predictive of ovarian cancer recurrence and is of clinical utility in disease management.

7.
Subcell Biochem ; 97: 455-482, 2021.
Article in English | MEDLINE | ID: mdl-33779928

ABSTRACT

Preeclampsia (PE) is associated with long-term morbidity in mothers and lifelong morbidities for their children, ranging from cerebral palsy and cognitive delay in preterm infants, to hypertension, diabetes and obesity in adolescents and young adults. There are several processes that are critical for development of materno-fetal exchange, including establishing adequate perfusion of the placenta by maternal blood, and the formation of the placental villous vascular tree. Recent studies provide persuasive evidence that placenta-derived extracellular vesicles (EVs) represent a significant intercellular communication pathway, and that they may play an important role in placental and endothelial cell (both fetal and maternal) function. These functions are known to be altered in PE. EVs can carry and transport a wide range of bioactive molescules that have potential to be used as biomarkers and therapeutic delivery tools for PE. EV content is often parent cell specific, thus providing an insight or "thumbprint" of the intracellular environment of the originating cell (e.g., human placenta). EV have been identified in plasma under both normal and pathological conditions, including PE. The concentration of EVs and their content in plasma has been reported to increase in association with disease severity and/or progression. Placenta-derived EVs have been identified in maternal plasma during normal pregnancy and PE pregnancies. They contain placenta-specific proteins and miRNAs and, as such, may be differentiated from maternally-derived EVs. The aim of this review, thus, is to describe the potential roles of EVs in preecmpatic pregnancies, focussing on EVs secreted from placental cells. The biogenesis, specificity of placental EVs, and methods used to characterise EVs in the context of PE pregnancies will be also discussed.


Subject(s)
Extracellular Vesicles , Pre-Eclampsia , Adolescent , Biomarkers , Child , Female , Humans , Infant, Newborn , Infant, Premature , Placenta , Pregnancy
8.
Cancers (Basel) ; 12(9)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825247

ABSTRACT

Caveolin-1 (CAV1) is a well-established nitric oxide synthase inhibitor, whose function as a tumor suppressor is favored by, but not entirely dependent on, the presence of E-cadherin. Tumors are frequently hypoxic and the activation of the hypoxia-inducible factor-1α (HIF1α) promotes tumor growth. HIF1α is regulated by several post-translational modifications, including S-nitrosylation. Here, we evaluate the mechanisms underlying tumor suppression by CAV1 in cancer cells lacking E-cadherin in hypoxia. Our main findings are that CAV1 reduced HIF activity and Vascular Endothelial Growth Factor expression in vitro and in vivo. This effect was neither due to reduced HIF1α protein stability or reduced nuclear translocation. Instead, HIF1α S-nitrosylation observed in hypoxia was diminished by the presence of CAV1, and nitric oxide synthase (NOS) inhibition by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) reduced HIF1α transcriptional activity in cells to the same extent as observed upon CAV1 expression. Additionally, arginase inhibition by (S)-(2-Boronoethyl)-L-cysteine (BEC) partially rescued cells from the CAV1-mediated suppression of HIF1α transcriptional activity. In vivo, CAV1-mediated tumor suppression was dependent on NOS activity. In summary, CAV1-dependent tumor suppression in the absence of E-cadherin is linked to reduced HIF1α transcriptional activity via diminished NOS-mediated HIF1α S-nitrosylation.

9.
Oncogene ; 39(18): 3693-3709, 2020 04.
Article in English | MEDLINE | ID: mdl-32152405

ABSTRACT

Caveolin-1 (CAV1) enhanced migration, invasion, and metastasis of cancer cells is inhibited by co-expression of the glycoprotein E-cadherin. Although the two proteins form a multiprotein complex that includes ß-catenin, it remained unclear how this would contribute to blocking the metastasis promoting function of CAV1. Here, we characterized by mass spectrometry the protein composition of CAV1 immunoprecipitates from B16F10 murine melanoma cells expressing or not E-cadherin. The novel protein tyrosine phosphatase PTPN14 was identified by mass spectrometry analysis exclusively in co-immunoprecipitates of CAV1 with E-cadherin. Interestingly, PTPN14 is implicated in controlling metastasis, but only few known PTPN14 substrates exist. We corroborated by western blotting experiments that PTPN14 and CAV1 co-inmunoprecipitated in the presence of E-cadherin in B16F10 melanoma and other cancer cells. Moreover, the CAV1(Y14F) mutant protein was shown to co-immunoprecipitate with PTPN14 even in the absence of E-cadherin, and overexpression of PTPN14 reduced CAV1 phosphorylation on tyrosine-14, as well as suppressed CAV1-enhanced cell migration, invasion and Rac-1 activation in B16F10, metastatic colon [HT29(US)] and breast cancer (MDA-MB-231) cell lines. Finally, PTPN14 overexpression in B16F10 cells reduced the ability of CAV1 to induce metastasis in vivo. In summary, we identify here CAV1 as a novel substrate for PTPN14 and show that overexpression of this phosphatase suffices to reduce CAV1-induced metastasis.


Subject(s)
Cadherins/genetics , Caveolin 1/genetics , Melanoma, Experimental/genetics , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Melanoma, Experimental/pathology , Mice , Neoplasm Invasiveness , Neoplasm Metastasis , Phosphorylation/genetics , beta Catenin/genetics
10.
J Nanobiotechnology ; 18(1): 20, 2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31973696

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) have shown great potential for targeted therapy, as they have a natural ability to pass through biological barriers and, depending on their origin, can preferentially accumulate at defined sites, including tumors. Analyzing the potential of EVs to target specific cells remains challenging, considering the unspecific binding of lipophilic tracers to other proteins, the limitations of fluorescence for deep tissue imaging and the effect of external labeling strategies on their natural tropism. In this work, we determined the cell-type specific tropism of B16F10-EVs towards cancer cell and metastatic tumors by using fluorescence analysis and quantitative gold labeling measurements. Surface functionalization of plasmonic gold nanoparticles was used to promote indirect labeling of EVs without affecting size distribution, polydispersity, surface charge, protein markers, cell uptake or in vivo biodistribution. Double-labeled EVs with gold and fluorescent dyes were injected into animals developing metastatic lung nodules and analyzed by fluorescence/computer tomography imaging, quantitative neutron activation analysis and gold-enhanced optical microscopy. RESULTS: We determined that B16F10 cells preferentially take up their own EVs, when compared with colon adenocarcinoma, macrophage and kidney cell-derived EVs. In addition, we were able to detect the preferential accumulation of B16F10 EVs in small metastatic tumors located in lungs when compared with the rest of the organs, as well as their precise distribution between tumor vessels, alveolus and tumor nodules by histological analysis. Finally, we observed that tumor EVs can be used as effective vectors to increase gold nanoparticle delivery towards metastatic nodules. CONCLUSIONS: Our findings provide a valuable tool to study the distribution and interaction of EVs in mice and a novel strategy to improve the targeting of gold nanoparticles to cancer cells and metastatic nodules by using the natural properties of malignant EVs.


Subject(s)
Antineoplastic Agents/chemistry , Extracellular Vesicles/chemistry , Gold/chemistry , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/metabolism , Melanoma/chemistry , Metal Nanoparticles/chemistry , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/therapy , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Membrane Permeability , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/therapy , Fluorescent Dyes/chemistry , Humans , Lung/metabolism , Melanoma, Experimental/diagnostic imaging , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Optical Imaging , Surface Properties , Tissue Distribution
11.
Sci Rep ; 10(1): 343, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31941923

ABSTRACT

During intercellular communication, cells release extracellular vesicles such as exosomes, which contain proteins, ncRNAs and mRNAs that can influence proliferation and/or trigger apoptosis in recipient cells, and have been proposed to play an essential role in promoting invasion of tumor cells and in the preparation of metastatic niches. Our group proposed the antisense non-coding mitochondrial RNA (ASncmtRNA) as a new target for cancer therapy. ASncmtRNA knockdown using an antisense oligonucleotide (ASO-1537S) causes massive death of tumor cells but not normal cells and strongly reduces metastasis in mice. In this work, we report that exosomes derived from ASO-1537S-treated MDA-MB-231 breast cancer cells (Exo-1537S) inhibits tumorigenesis of recipient cells, in contrast to exosomes derived from control-ASO-treated cells (Exo-C) which, in contrast, enhance these properties. Furthermore, an in vivo murine peritoneal carcinomatosis model showed that Exo-1537S injection reduced tumorigenicity compared to controls. Proteomic analysis revealed the presence of Lactadherin and VE-Cadherin in exosomes derived from untreated cells (Exo-WT) and Exo-C but not in Exo-1537S, and the latter displayed enrichment of proteasomal subunits. These results suggest a role for these proteins in modulation of tumorigenic properties of exosome-recipient cells. Our results shed light on the mechanisms through which ASncmtRNA knockdown affects the preparation of breast cancer metastatic niches in a peritoneal carcinomatosis model.


Subject(s)
Exosomes/metabolism , Mitochondria/genetics , RNA, Untranslated/metabolism , Animals , Antigens, CD/metabolism , Antigens, Surface/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cadherins/metabolism , Carcinogenesis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , Humans , Mice , Milk Proteins/metabolism , Oligoribonucleotides, Antisense/metabolism , Oligoribonucleotides, Antisense/pharmacology , RNA, Untranslated/antagonists & inhibitors , RNA, Untranslated/genetics , Transplantation, Heterologous
12.
Biomolecules ; 9(8)2019 07 29.
Article in English | MEDLINE | ID: mdl-31362353

ABSTRACT

Caveolin-1 (CAV1) is a scaffolding protein with a controversial role in cancer. This review will initially discuss earlier studies focused on the role as a tumor suppressor before elaborating subsequently on those relating to function of the protein as a promoter of metastasis. Different mechanisms are summarized illustrating how CAV1 promotes such traits upon expression in cancer cells (intrinsic mechanisms). More recently, it has become apparent that CAV1 is also a secreted protein that can be included into exosomes where it plays a significant role in determining cargo composition. Thus, we will also discuss how CAV1 containing exosomes from metastatic cells promote malignant traits in more benign recipient cells (extrinsic mechanisms). This ability appears, at least in part, attributable to the transfer of specific cargos present due to CAV1 rather than the transfer of CAV1 itself. The evolution of how our perception of CAV1 function has changed since its discovery is summarized graphically in a time line figure.


Subject(s)
Caveolin 1/metabolism , Neoplasm Metastasis/pathology , Caveolin 1/genetics , Exosomes/metabolism , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Metastasis/genetics , Signal Transduction
13.
Nanomedicine (Lond) ; 13(20): 2597-2609, 2018 10.
Article in English | MEDLINE | ID: mdl-30338706

ABSTRACT

Breast cancer is one of the most frequently diagnosed cancers and the leading cause of cancer-related deaths in women worldwide, whereby mortality is largely attributable to the development of distant metastasis. Caveolin-1 (CAV1) is a multifunctional membrane protein that is typically upregulated in the final stages of cancer and promotes migration and invasion of tumor cells. Elevated levels of CAV1 have been detected in extracellular vesicles (EVs) from advanced cancer patients. EVs are lipid enclosed vesicular structures that contain bioactive proteins, DNA and RNAs, which can be transferred to other cells and promote metastasis. Therefore, we hypothesized that CAV1 containing EVs released from breast cancer cells may enhance migration and invasion of recipient cells. EVs were purified from conditioned media of MDA-MB-231 wild-type (WT), MDA-MB-231 (shCAV1; possessing the plasmid pLKO.1 encoding a 'small hairpin' directed against CAV1) and MDA-MB-231 (shC) short hairpin control cells. Nanoparticle tracking analysis revealed an average particle size of 40-350 nm for all preparations. As anticipated, CAV1 was detected in MDA-MB-231 WT and shC EVs, but not in MDA-MB-231 (shCAV1) EVs. Mass spectrometry analysis revealed the presence of specific cell adhesion-related proteins, such as Cyr61, tenascin (TNC) and S100A9 only in WT and shC, but not in shCAV1 EVs. Importantly, EVs containing CAV1 promoted migration and invasion of cells lacking CAV1. We conclude that the presence of CAV1 in EVs from metastatic breast cancer cells is associated with enhanced migration and invasiveness of recipient cells in vitro, suggesting that intercellular communication promoted by EVs containing CAV1 will likely favor metastasis in vivo.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Caveolin 1/genetics , Cell Adhesion/drug effects , Breast Neoplasms/chemistry , Breast Neoplasms/pathology , Caveolin 1/chemistry , Cell Communication/drug effects , Cell Movement/drug effects , Extracellular Vesicles/chemistry , Female , Humans , MCF-7 Cells , Neoplasm Metastasis
14.
Aging (Albany NY) ; 11(1): 33-47, 2018 12 30.
Article in English | MEDLINE | ID: mdl-30595560

ABSTRACT

Human and mouse cells display a differential expression pattern of a family of mitochondrial noncoding RNAs (ncmtRNAs), according to proliferative status. Normal proliferating and cancer cells express a sense ncmtRNA (SncmtRNA), which seems to be required for cell proliferation, and two antisense transcripts referred to as ASncmtRNA-1 and -2. Remarkably however, the ASncmtRNAs are downregulated in human and mouse cancer cells, including HeLa and SiHa cells, transformed with HPV-18 and HPV-16, respectively. HPV E2 protein is considered a tumor suppressor in the context of high-risk HPV-induced transformation and therefore, to explore the mechanisms involved in the downregulation of ASncmtRNAs during tumorigenesis, we studied human foreskin keratinocytes (HFK) transduced with lentiviral-encoded HPV-18 E2. Transduced cells displayed a significantly extended replicative lifespan of up to 23 population doublings, compared to 8 in control cells, together with downregulation of the ASncmtRNAs. At 26 population doublings, cells transduced with E2 were arrested at G2/M, together with downregulation of E2 and SncmtRNA and upregulation of ASncmtRNA-2. Our results suggest a role for high-risk HPV E2 protein in cellular immortalization. Additionally, we propose a new cellular phenotype according to the expression of the SncmtRNA and the ASncmtRNAs.


Subject(s)
Cellular Senescence/physiology , Human papillomavirus 18/metabolism , Keratinocytes/physiology , Oncogene Proteins, Viral/metabolism , RNA, Long Noncoding/metabolism , RNA, Mitochondrial/metabolism , Cell Cycle Checkpoints , Cell Line , Down-Regulation , Gene Expression Regulation , Green Fluorescent Proteins , Humans , RNA, Mitochondrial/genetics , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism
15.
J Biol Chem ; 287(25): 21303-15, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22539350

ABSTRACT

The study of RNA and DNA oncogenic viruses has proved invaluable in the discovery of key cellular pathways that are rendered dysfunctional during cancer progression. An example is high risk human papillomavirus (HPV), the etiological agent of cervical cancer. The role of HPV oncogenes in cellular immortalization and transformation has been extensively investigated. We reported the differential expression of a family of human mitochondrial non-coding RNAs (ncRNAs) between normal and cancer cells. Normal cells express a sense mitochondrial ncRNA (SncmtRNA) that seems to be required for cell proliferation and two antisense transcripts (ASncmtRNAs). In contrast, the ASncmtRNAs are down-regulated in cancer cells. To shed some light on the mechanisms that trigger down-regulation of the ASncmtRNAs, we studied human keratinocytes (HFK) immortalized with HPV. Here we show that immortalization of HFK with HPV-16 or 18 causes down-regulation of the ASncmtRNAs and induces the expression of a new sense transcript named SncmtRNA-2. Transduction of HFK with both E6 and E7 is sufficient to induce expression of SncmtRNA-2. Moreover, E2 oncogene is involved in down-regulation of the ASncmtRNAs. Knockdown of E2 in immortalized cells reestablishes in a reversible manner the expression of the ASncmtRNAs, suggesting that endogenous cellular factors(s) could play functions analogous to E2 during non-HPV-induced oncogenesis.


Subject(s)
Cell Transformation, Viral , Gene Expression Regulation , Human papillomavirus 16/metabolism , Human papillomavirus 18/metabolism , Keratinocytes/metabolism , Oncogene Proteins, Viral/metabolism , RNA, Antisense/biosynthesis , RNA, Untranslated/biosynthesis , RNA/biosynthesis , Cell Line, Transformed , Gene Knockdown Techniques , HeLa Cells , Human papillomavirus 16/genetics , Human papillomavirus 18/genetics , Humans , Keratinocytes/pathology , Keratinocytes/virology , Oncogene Proteins, Viral/genetics , RNA/genetics , RNA, Antisense/genetics , RNA, Mitochondrial , RNA, Untranslated/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...