Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Chemphyschem ; 24(23): e202300387, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37675623

ABSTRACT

We present a detailed theoretical study of the molecular oxygen trimer where the potential energy surfaces of the seven multiplet states have been calculated by means of a pair approximation with very accurate dimer ab initio potentials. In order to obtain all the states a matrix representation of the potential using the uncoupled spin representation has been applied. The S = 0 ${S = 0}$ and S = 1 ${S = 1}$ states are nearly degenerate and low-lying isomers appear for most multiplicities. A crucial point in deciding the relative stabilities is the zero-point energy which represents a sizable fraction of the electronic well-depth. Therefore, we have performed accurate diffusion Monte Carlo studies of the lowest state in each multiplicity. Analysis of the wavefunction allows a deeper interpretation of the cluster structures, finding that they are significantly floppy in most cases.

2.
Chemphyschem ; 24(23): e202300424, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37671621

ABSTRACT

Interactions between molecular hydrogen and ions are of interest in cluster science, astrochemistry and hydrogen storage. In dynamical simulations, H2 molecules are usually modelled as point particles, an approximation that can fail for anisotropic interactions. Here, we apply an adiabatic separation of the H2 rotational motion to build effective pseudoatom-ion potentials and in turn study the properties of (H2 )n Na+ /Cl- clusters. These interaction potentials are based on high-level ab initio calculations and Improved Lennard-Jones parametrizations, while the subsequent dynamics has been performed by quantum Monte Carlo calculations. By comparisons with simulations explicitly describing the molecular rotations, it is concluded that the present adiabatic model is very adequate. Interestingly, we find differences in the cluster stabilities and coordination shells depending on the spin isomer considered (para- or ortho-H2 ), especially for the anionic clusters.

3.
Chemphyschem ; 24(22): e202300425, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37608649

ABSTRACT

We present a new analytical potential energy surface (PES) for the interaction between the trihydrogen cation and a He atom, H 3 + - H e ${{H}_{3}^{+}-He}$ , in its electronic ground state. The proposed PES has been built as a sum of two contributions: a polarization energy term due to the electric field generated by the molecular cation at the position of the polarizable He atom, and an exchange-repulsion and dispersion interactions represented by a sum of "atom-bond" potentials between the three bonds of H 3 + ${{H}_{3}^{+}}$ and the He atom. All parameters of this new PES have been chosen and fitted from data obtained from high-level ab-initio calculations. Using this new PES plus the Aziz-Slaman potential for the interaction between Helium atoms and assuming pair-wise interactions, we carry out classical Basin-Hopping (BH) global optimization, semiclassical BH with Zero Point Energy corrections, and quantum Diffusion Monte Carlo simulations. We have found the minimum energy configurations of small He clusters doped with H 3 + ${{H}_{3}^{+}}$ , H 3 + H e N ${{H}_{3}^{+}{\left(He\right)}_{N}}$ , with N=1-16. The study of the energies of these clusters allows us to find a pronounced anomaly for N=12, in perfect agreement with previous experimental findings, which we relate to a greater relative stability of this aggregate.

4.
Phys Chem Chem Phys ; 25(23): 16157, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37278559

ABSTRACT

Correction for 'Helium nanodroplets as an efficient tool to investigate hydrogen attachment to alkali cations' by Siegfried Kollotzek et al., Phys. Chem. Chem. Phys., 2023, 25, 462-470, https://doi.org/10.1039/D2CP03841B.

5.
J Phys Chem Lett ; 14(13): 3126-3131, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36952614

ABSTRACT

In this Letter, we report the experimental detection of likely the largest ordered structure of helium atoms surrounding a monatomic impurity observed to date using a recently developed technique. The mass spectrometry investigation of HeNCa2+ clusters, formed in multiply charged helium nanodroplets, reveals magic numbers at N = 12, 32, 44, and 74. Classical optimization and path integral Monte Carlo calculations suggest the existence of up to four shells surrounding the calcium dication which are closed with well-ordered Mozartkugel-like structures: He12Ca2+ with an icosahedron, the second at He32Ca2+ with a dodecahedron, the third at He44Ca2+ with a larger icosahedron, and finally for He74Ca2+, we find that the outermost He atoms form an icosidodecahedron which contains the other inner shells. We analyze the reasons for the formation of such ordered shells in order to guide the selection of possible candidates to exhibit a similar behavior.

6.
Phys Chem Chem Phys ; 25(1): 462-470, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36477158

ABSTRACT

We report a novel method to reversibly attach and detach hydrogen molecules to positively charged sodium clusters formed inside a helium nanodroplet host matrix. It is based on the controlled production of multiply charged helium droplets which, after picking up sodium atoms and exposure to H2 vapor, lead to the formation of Nam+(H2)n clusters, whose population was accurately measured using a time-of-flight mass spectrometer. The mass spectra reveal particularly favorable Na+(H2)n and Na2+(H2)n clusters for specific "magic" numbers of attached hydrogen molecules. The energies and structures of these clusters have been investigated by means of quantum-mechanical calculations employing analytical interaction potentials based on ab initio electronic structure calculations. A good agreement is found between the experimental and the theoretical magic numbers.

7.
Phys Chem Chem Phys ; 24(26): 15840-15850, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35726662

ABSTRACT

Graphdiyne (GDY) has emerged as a very promising two-dimensional (2D) membrane for gas separation technologies. One of the most challenging goals is the separation of deuterium (D2) and tritium (T2) from a mixture with the most abundant hydrogen isotope, H2, an achievement that would be of great value for a number of industrial and scientific applications. In this work we study the separation of hydrogen isotopes in their transport through a GDY membrane due to mass-dependent quantum effects that are enhanced by the confinement provided by its intrinsic sub-nanometric pores. A reliable improved Lennard-Jones force field, optimized on accurate ab initio calculations, has been built to describe the molecule-membrane interaction, where the molecule is treated as a pseudoatom. The quantum dynamics of the molecules impacting on the membrane along a complete set of incidence directions have been rigorously addressed by means of wave packet calculations in the 3D space, which have allowed us to obtain transmission probabilities and, in turn, permeances, as the thermal average of the molecular flux per unit pressure. The effect of the different incidence directions on the probabilities is analyzed in detail and it is concluded that restricting the simulations to a perpendicular incidence leads to reasonable results. Moreover, it is found that a simple 1D model-using a zero-point energy-corrected interaction potential-provides an excellent agreement with the 3D probailities for perpendicular incidence conditions. Finally, D2/H2 and T2/H2 selectivities are found to reach maximum values of about 6 and 21 at ≈50 and 45 K, respectively, a feature due to a balance between zero-point energy and tunneling effects in the transport dynamics. Permeances at these temperatures are below recommended values for practical applications, however, at slightly higher temperatures (77 K) they become acceptable while the selectivities preserve promising values, particularly for the separation of tritium.

8.
Phys Chem Chem Phys ; 23(34): 18547-18557, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34612392

ABSTRACT

Microscopic-level understanding of the separation mechanism for two-dimensional (2D) membranes is an active area of research due to potential implications of this class of membranes for various technological processes. Helium (He) purification from the natural resources is of particular interest due to the shortfall in its production. In this work, we applied the ring polymer molecular dynamics (RPMD) method to graphdiyne (Gr2) and graphtriyne (Gr3) 2D membranes having variable pore sizes for the separation of He isotopes, and compare for the first time with rigorous quantum calculations. We found that the transmission rate through Gr3 is many orders of magnitude greater than Gr2. The selectivity of either isotope at low temperatures is a consequence of a delicate balance between the zero-point energy effect and tunneling of 4He and 3He. In particular, a remarkable tunneling effect is reported on the Gr2 membrane at 10 K, leading to a much larger permeation of the lighter species as compared to the heavier isotope. RPMD provides an efficient approach for studying the separation of He isotopes, taking into account quantum effects of light nuclei motions at low temperatures, which classical methods fail to capture.

9.
Molecules ; 26(12)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203679

ABSTRACT

We present a combined experimental and theoretical investigation on Ca+ ions in helium droplets, HeNCa+. The clusters have been formed in the laboratory by means of electron-impact ionization of Ca-doped helium nanodroplets. Energies and structures of such complexes have been computed using various approaches such as path integral Monte Carlo, diffusion Monte Carlo and basin-hopping methods. The potential energy functions employed in these calculations consist of analytical expressions following an improved Lennard-Jones formula whose parameters are fine-tuned by exploiting ab initio estimations. Ion yields of HeNCa+ -obtained via high-resolution mass spectrometry- generally decrease with N with a more pronounced drop between N=17 and N=25, the computed quantum HeNCa+ evaporation energies resembling this behavior. The analysis of the energies and structures reveals that covering Ca+ with 17 He atoms leads to a cluster with one of the smallest energies per atom. As new atoms are added, they continue to fill the first shell at the expense of reducing its stability, until N=25, which corresponds to the maximum number of atoms in that shell. Behavior of the evaporation energies and radial densities suggests liquid-like cluster structures.

10.
J Chem Phys ; 154(10): 104307, 2021 Mar 14.
Article in English | MEDLINE | ID: mdl-33722007

ABSTRACT

Oxygen in its elemental form shows a variety of magnetic properties in its condensed phases; in particular, the epsilon solid phase loses its magnetism. These phenomena reflect the nature of the intermolecular forces present in the solid and the changes that arise with variations in pressure and temperature. In this study, we use intermolecular potentials obtained with unrestricted ab initio methods to model the singlet state of the oxygen tetramer [(O2)4], which is the unit cell, consistent with the non-magnetic character of this phase. To do this, we perform an analysis of the coupled-uncoupled representations of the spin operator together with a pairwise approximation and the Heisenberg Hamiltonian. We start from unrestricted potentials for the dimer calculated at a high level as well as different density functional theory (DFT) functionals and then apply a finite model to predict the properties of the epsilon phase. The results obtained in this way reproduce well the experimental data in the entire pressure range below 60 GPa. Additionally, we show the importance of calculating the singlet state of the tetramer as opposed to previous DFT periodic calculations, where the unrestricted description leads to a mixture of spin states and a poor comparison with the experiment. This point is crucial in the recent discussion about the coexistence of two epsilon phases: one where the identity of each O2 with spin S = 1 is retained within the tetramer unit vs another at higher pressures where the tetramer behaves as a single unit with a closed-shell character.

11.
J Chem Phys ; 152(18): 184304, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32414264

ABSTRACT

The properties of molecular oxygen including its condensed phases continue to be of great relevance for the scientific community. The richness and complexity of its associated properties stem from the fact that it is a very stable diradical. Its open-shell nature leads to low-lying multiplets with total electronic spin S = 0, 1, 2 in the case of the dimer, (O2)2, and the accurate calculation of the intermolecular potentials represents a challenge to ab initio electronic structure methods. In this work, we present intermolecular potentials calculated at a very high level, thus competing with the most accurate restricted potentials obtained to date. This is accomplished by drawing on an analogy between the coupled and uncoupled representations of angular momentum and restricted vs unrestricted methodologies. The S = 2 state can be well represented by unrestricted calculations in which the spins of the unpaired electrons are aligned in parallel; however, for the state where they are aligned in antiparallel fashion, it would seem that the total spin is not well defined, i.e., the well-known spin contamination problem. We show that its energy corresponds to that of the S = 1 state and perform unrestricted coupled cluster calculations for these two states. Then, we obtain the S = 0 state through the Heisenberg Hamiltonian and show that this is very reliable in the well region of the potentials. We make extensive comparisons with the best restricted potentials [Bartolomei et al., Phys. Chem. Chem. Phys. 10(35), 5374-5380 (2008)] and with reliable experimental determinations, and a very good agreement is globally found.

12.
Nanomaterials (Basel) ; 11(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396322

ABSTRACT

We report accurate quantum calculations of the sieving of Helium atoms by two-dimensional (2D) graphtriyne layers with a new interaction potential. Thermal rate constants and permeances in an ample temperature range are computed and compared for both Helium isotopes. With a pore larger than graphdiyne, the most common member of the γ-graphyne family, it could be expected that the appearance of quantum effects were more limited. We find, however, a strong quantum behavior that can be attributed to the presence of selective adsorption resonances, with a pronounced effect in the low temperature regime. This effect leads to the appearance of some selectivity at very low temperatures and the possibility for the heavier isotope to cross the membrane more efficiently than the lighter, contrarily to what happened with graphdiyne membranes, where the sieving at low energy is predominantly ruled by quantum tunneling. The use of more approximate methods could be not advisable in these situations and prototypical transition state theory treatments might lead to large errors.

13.
J Phys Chem A ; 123(39): 8397-8405, 2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31490073

ABSTRACT

Complexes between metal cations and molecular hydrogen are systems quite amenable for precise spectroscopic and theoretical studies, and at the same time, they are relevant for applications in hydrogen storage and astrochemistry. In this work, we report new intermolecular potential energy surfaces and rovibrational states calculations for complexes involving molecular hydrogen and alkaline metal cations, M+-H2 (M+ = Na+, K+, Rb+, Cs+). The intermolecular potentials, formulated in an internally consistent way to emphasize differences in the properties of the systems, are represented by simple analytical expressions whose parameters have been optimized from comparison with accurate ab initio calculations. Properties of the low-lying bound states-binding energies, frequencies, and rotational constants-are compared with previous measurements or computations and an overall good agreement is achieved, supporting the reliability of the present formulation. Variations of these properties as a function of the cation size and isotopic substitution, with a proper sequence of ortho and para rotational levels, are also discussed.

14.
Phys Chem Chem Phys ; 21(28): 15662-15668, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31271179

ABSTRACT

Interactions of atomic cations with molecular hydrogen are of interest for a wide range of applications in hydrogen technologies. These interactions are fairly strong despite being non-covalent, hence one can ask whether hydrogen molecules would form dense, solid-like, solvation shells around the ion (snowballs) or rather a more weakly bound compound. In this work, the interactions between Cs+ and H2 are studied both experimentally and computationally. Isotopic substitution of H2 by D2 is also investigated. On the one hand, helium nanodroplets doped with cesium and hydrogen or deuterium are ionized by electron impact and the (H2/D2)nCs+ (up to n = 30) clusters formed are identified via mass spectrometry. On the other hand, a new analytical potential energy surface, based on ab initio calculations, is developed and used to study cluster energies and structures by means of classical and quantum-mechanical Monte Carlo methods. The most salient features of the measured ion abundances are remarkably mimicked by the computed evaporation energies, particularly for the clusters composed of deuterium. This result supports the reliability of the present potential energy surface and allows us to recommend its use in related systems. Clusters with either twelve H2 or D2 molecules stand out for their stability and quasi-rigid icosahedral structures. However, the first solvation shell involves thirteen or fourteen molecules for hydrogenated or deuterated clusters, respectively. This shell retains its internal structure when extra molecules are added to the second shell and is nearly solid-like, especially for the deuterated clusters. The role played by three-body induction interactions as well as the rotational degrees of freedom is analyzed and they are found to be significant (up to 15% and 18%, respectively) for the molecules belonging to the first solvation shell.

15.
J Chem Phys ; 150(15): 154304, 2019 Apr 21.
Article in English | MEDLINE | ID: mdl-31005067

ABSTRACT

Solvation of Cs+ ions inside helium droplets has been investigated both experimentally and theoretically. On the one hand, mass spectra of doped helium clusters ionized with a crossed electron beam, HeNCs+, have been recorded for sizes up to N = 60. The analysis of the ratio between the observed peaks for each size N reveals evidences of the closure of the first solvation shell when 17 He atoms surround the alkali ion. On the other hand, we have obtained energies and geometrical structures of the title clusters by means of basin-hopping, diffusion Monte Carlo (DMC), and path integral Monte Carlo (PIMC) methods. The analytical He-Cs+ interaction potential employed in our calculations is represented by the improved Lennard-Jones expression optimized on high level ab initio energies. The weakness of the existing interaction between helium and Cs+ in comparison with some other alkali ions such as Li+ is found to play a crucial role. Our theoretical findings confirm that the first solvation layer is completed at N = 17 and both evaporation and second difference energies obtained with the PIMC calculation seem to reproduce a feature observed at N = 12 for the experimental ion abundance. The analysis of the DMC probability distributions reveals the important contribution from the icosahedral structure to the overall configuration for He12Cs+.

16.
Phys Chem Chem Phys ; 20(40): 25569-25576, 2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30112553

ABSTRACT

We report on a combined experimental and theoretical study of Li+ ions solvated by up to 50 He atoms. The experiments show clear enhanced abundances associated with HenLi+ clusters where n = 2, 6, 8, and 14. We find that classical methods, e.g. basin-hopping (BH), give results that qualitatively agree with quantum mechanical methods such as path integral Monte Carlo, diffusion Monte Carlo and quantum free energy, regarding both energies and the solvation structures that are formed. The theory identifies particularly stable structures for n = 4, 6 and 8 which line up with some of the most abundant features in the experiments.

17.
Phys Chem Chem Phys ; 19(38): 26358-26368, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28937173

ABSTRACT

Benchmark interaction energies between coronene, C24H12, and molecular hydrogen, H2, have been computed by means of high level electronic structure calculations. Binding energies, equilibrium distances and strengths of the long range attraction, evaluated for the basic configurations of the H2-C24H12 complex, indicate that the system is not too affected by the relative orientations of the diatom, suggesting that its behavior can be approximated to that of a pseudoatom. The obtained energy profiles have confirmed the noncovalent nature of the bonding and serve to tune-up the parameters of a new force field based on the atom-bond approach which correctly describes the main features of the H2-coronene interaction. The structure and binding energies of (para-H2)N-coronene clusters have been investigated with an additive model for the above mentioned interactions and exploiting basin-hopping and path integral Monte Carlo calculations for N = 1-16 at T = 2 K. Differences with respect to the prototypical (rare gas)N-coronene aggregates have been discussed.

18.
J Chem Phys ; 146(3): 034302, 2017 Jan 21.
Article in English | MEDLINE | ID: mdl-28109229

ABSTRACT

Clusters formed by the combination of rare gas (RG) atoms of He, Ne, Ar, and Kr on coronene have been investigated by means of a basin-hopping algorithm and path integral Monte Carlo calculations at T = 2 K. Energies and geometries have been obtained and the role played by the specific RG-RG and RG-coronene interactions on the final results is analysed in detail. Signatures of diffuse behavior of the He atoms on the surface of the coronene are in contrast with the localization of the heavier species, Ar and Kr. The observed coexistence of various geometries for Ne suggests the motion of the RG atoms on the multi-well potential energy surface landscape offered by the coronene. Therefore, the investigation of different clusters enables a comparative analysis of localized versus non-localized features. Mixed Ar-He-coronene clusters have also been considered and the competition of the RG atoms to occupy the docking sites on the molecule is discussed. All the obtained information is crucial to assess the behavior of coronene, a prototypical polycyclic aromatic hydrocarbon clustering with RG atoms at a temperature close to that of interstellar medium, which arises from the critical balance of the interactions involved.

19.
J Phys Chem A ; 120(27): 5370-9, 2016 Jul 14.
Article in English | MEDLINE | ID: mdl-27058172

ABSTRACT

Feynman-Hibbs (FH) effective potentials constitute an appealing approach for investigations of many-body systems at thermal equilibrium since they allow us to easily include quantum corrections within standard classical simulations. In this work we apply the FH formulation to the study of NeN-coronene clusters (N = 1-4, 14) in the 2-14 K temperature range. Quadratic (FH2) and quartic (FH4) contributions to the effective potentials are built upon Ne-Ne and Ne-coronene analytical potentials. In particular, a new corrected expression for the FH4 effective potential is reported. FH2 and FH4 cluster energies and structures-obtained from energy optimization through a basin-hopping algorithm as well as classical Monte Carlo simulations-are reported and compared with reference path integral Monte Carlo calculations. For temperatures T > 4 K, both FH2 and FH4 potentials are able to correct the purely classical calculations in a consistent way. However, the FH approach fails at lower temperatures, especially the quartic correction. It is thus crucial to assess the range of applicability of this formulation and, in particular, to apply the FH4 potentials with great caution. A simple model of N isotropic harmonic oscillators allows us to propose a means of estimating the cutoff temperature for the validity of the method, which is found to increase with the number of atoms adsorbed on the coronene molecule.

20.
J Chem Phys ; 143(22): 224306, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26671374

ABSTRACT

Coronene-doped helium clusters have been studied by means of classical and quantum mechanical (QM) methods using a recently developed He-C24H12 global potential based on the use of optimized atom-bond improved Lennard-Jones functions. Equilibrium energies and geometries at global and local minima for systems with up to 69 He atoms were calculated by means of an evolutive algorithm and a basin-hopping approach and compared with results from path integral Monte Carlo (PIMC) calculations at 2 K. A detailed analysis performed for the smallest sizes shows that the precise localization of the He atoms forming the first solvation layer over the molecular substrate is affected by differences between relative potential minima. The comparison of the PIMC results with the predictions from the classical approaches and with diffusion Monte Carlo results allows to examine the importance of both the QM and thermal effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...