Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(1): e0261062, 2022.
Article in English | MEDLINE | ID: mdl-34995286

ABSTRACT

Bag-1 protein is a crucial target in cancer to increase the survival and proliferation of cells. The Bag-1 expression is significantly upregulated in primary and metastatic cancer patients compared to normal breast tissue. Overexpression of Bag-1 decreases the efficiency of conventional chemotherapeutic drugs, whereas Bag-1 silencing enhances the apoptotic efficiency of therapeutics, mostly in hormone-positive breast cancer subtypes. In this study, we generated stable Bag-1 knockout (KO) MCF-7 breast cancer cells to monitor stress-mediated cellular alterations in comparison to wild type (wt) and Bag-1 overexpressing (Bag-1 OE) MCF-7 cells. Validation and characterization studies of Bag-1 KO cells showed different cellular morphology with hyperactive Akt signaling, which caused stress-mediated actin reorganization, focal adhesion decrease and led to mesenchymal characteristics in MCF-7 cells. A potent Akt inhibitor, MK-2206, suppressed mesenchymal transition in Bag-1 KO cells. Similar results were obtained following the recovery of Bag-1 isoforms (Bag-1S, M, or L) in Bag-1 KO cells. The findings of this study emphasized that Bag-1 is a mediator of actin-mediated cytoskeleton organization through regulating Akt activation.


Subject(s)
Actin Cytoskeleton/metabolism , DNA-Binding Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Transcription Factors/metabolism , Actin Cytoskeleton/genetics , Actins/metabolism , Apoptosis/genetics , Breast Neoplasms/pathology , CRISPR-Cas Systems , Cell Line, Tumor , Cell Survival , DNA-Binding Proteins/genetics , Epithelial-Mesenchymal Transition/physiology , Female , Humans , MCF-7 Cells/metabolism , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/genetics , Transcription Factors/genetics
2.
PLoS One ; 16(8): e0256640, 2021.
Article in English | MEDLINE | ID: mdl-34428256

ABSTRACT

Bag-1 is a multifunctional protein that regulates Hsp70 chaperone activity, apoptosis, and proliferation. The three major Bag-1 isoforms have different subcellular localizations and partly non-overlapping functions. To identify the detailed interaction network of each isoform, we utilized mass spectrometry-based proteomics and found that interactomes of Bag-1 isoforms contained many common proteins, with variations in their abundances. Bag-1 interactomes were enriched with proteins involved in protein processing and degradation pathways. Novel interaction partners included VCP/p97; a transitional ER ATPase, Rad23B; a shuttling factor for ubiquitinated proteins, proteasome components, and ER-resident proteins, suggesting a role for Bag-1 also in ER-associated protein degradation (ERAD). Bag-1 pull-down from cells and tissues from breast cancer patients validated these interactions and showed cancer-related prominence. Using in silico predictions we detected hotspot residues of Bag-1. Mutations of these residues caused loss of binding to protein quality control elements and impaired proteasomal activity in MCF-7 cells. Following CD147 glycosylation pattern, we showed that Bag-1 downregulated VCP/p97-dependent ERAD. Overall, our data extends the interaction map of Bag-1, and broadens its role in protein homeostasis. Targeting the interaction surfaces revealed in this study might be an effective strategy in the treatment of cancer.


Subject(s)
DNA-Binding Proteins/metabolism , Endoplasmic Reticulum-Associated Degradation , Transcription Factors/metabolism , Basigin/metabolism , DNA-Binding Proteins/genetics , Endoplasmic Reticulum/metabolism , Humans , MCF-7 Cells , Proteasome Endopeptidase Complex/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Transcription Factors/genetics , Valosin Containing Protein/metabolism
3.
North Clin Istanb ; 7(3): 203-209, 2020.
Article in English | MEDLINE | ID: mdl-32478289

ABSTRACT

OBJECTIVE: Turkey is one of the latest countries that COVID-19 disease was reported, with the first case on March 11, 2020, and since then, Istanbul became the epicenter of the pandemic in Turkey. Here, we reveal sequences of the virus isolated from three different patients with various clinical presentations. METHODS: Nasopharyngeal swab specimens of the patients were tested positive for the COVID-19 by qRT-PCR. Viral RNA extraction was performed from the same swab samples. Amplicon based libraries were prepared and sequenced using the Illumina NextSeq platform. Raw sequencing data were processed for variant calling and generating near-complete genome sequences. All three genomes were evaluated and compared with other worldwide isolates. RESULTS: The patients showed various clinics (an asymptomatic patient, patient with mild disease, and with severe pulmonary infiltration). Amplicon-based next-generation sequencing approach successfully applied to generate near-complete genomes with an average depth of 2.616. All three viral genomes carried the D614G variant (G clade according to GISAID classification) with implications for the origin of a spread first through China to Europe then to Istanbul. CONCLUSION: Here, we report the viral genomes circulating in Istanbul for the first time. Further sequencing of the virus isolates may enable us to understand variations in disease presentation and association with viral factors if there is any. In addition, the sequencing of more viral genomes will delineate the spread of disease and will guide and ease the necessary measures taken to stem the spread of the novel coronavirus.

4.
BMC Cancer ; 19(1): 1254, 2019 Dec 28.
Article in English | MEDLINE | ID: mdl-31883527

ABSTRACT

BACKGROUND: Bag-1 (Bcl-2-associated athanogene) is a multifunctional anti-apoptotic protein frequently overexpressed in cancer. Bag-1 interacts with a variety of cellular targets including Hsp70/Hsc70 chaperones, Bcl-2, nuclear hormone receptors, Akt and Raf kinases. In this study, we investigated in detail the effects of Bag-1 on major cell survival pathways associated with breast cancer. METHODS: Using immunoblot analysis, we examined Bag-1 expression profiles in tumor and normal tissues of breast cancer patients with different receptor status. We investigated the effects of Bag-1 on cell proliferation, apoptosis, Akt and Raf kinase pathways, and Bad phosphorylation by implementing ectopic expression or knockdown of Bag-1 in MCF-7, BT-474, MDA-MB-231 and MCF-10A breast cell lines. We also tested these in tumor and normal tissues from breast cancer patients. We investigated the interactions between Bag-1, Akt and Raf kinases in cell lines and tumor tissues by co-immunoprecipitation, and their subcellular localization by immunocytochemistry and immunohistochemistry. RESULTS: We observed that Bag-1 is overexpressed in breast tumors in all molecular subtypes, i.e., regardless of their ER, PR and Her2 expression profile. Ectopic expression of Bag-1 in breast cancer cell lines results in the activation of B-Raf, C-Raf and Akt kinases, which are also upregulated in breast tumors. Bag-1 forms complexes with B-Raf, C-Raf and Akt in breast cancer cells, enhancing their phosphorylation and activation, and ultimately leading to phosphorylation of the pro-apoptotic Bad protein at Ser112 and Ser136. This causes Bad's re-localization to the nucleus, and inhibits apoptosis in favor of cell survival. CONCLUSIONS: Overall, Bad inhibition by Bag-1 through activation of Raf and Akt kinases is an effective survival and growth strategy exploited by breast cancer cells. Therefore, targeting the molecular interactions between Bag-1 and these kinases might prove an effective anticancer therapy.


Subject(s)
Apoptosis , Breast Neoplasms/metabolism , DNA-Binding Proteins/metabolism , Signal Transduction , Transcription Factors/metabolism , bcl-Associated Death Protein/metabolism , Breast Neoplasms/physiopathology , Cell Line, Tumor , Cell Proliferation , Cell Survival , DNA-Binding Proteins/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Phosphorylation , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-akt/metabolism , Transcription Factors/genetics , Up-Regulation , bcl-Associated Death Protein/chemistry , bcl-Associated Death Protein/physiology , raf Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...