Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 909, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36808157

ABSTRACT

In a Bell experiment, it is natural to seek a causal account of correlations wherein only a common cause acts on the outcomes. For this causal structure, Bell inequality violations can be explained only if causal dependencies are modeled as intrinsically quantum. There also exists a vast landscape of causal structures beyond Bell that can witness nonclassicality, in some cases without even requiring free external inputs. Here, we undertake a photonic experiment realizing one such example: the triangle causal network, consisting of three measurement stations pairwise connected by common causes and no external inputs. To demonstrate the nonclassicality of the data, we adapt and improve three known techniques: (i) a machine-learning-based heuristic test, (ii) a data-seeded inflation technique generating polynomial Bell-type inequalities and (iii) entropic inequalities. The demonstrated experimental and data analysis tools are broadly applicable paving the way for future networks of growing complexity.

2.
Appl Opt ; 59(19): 5687-5692, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32609690

ABSTRACT

The orbital angular momentum conservation of light reveals different diffraction patterns univocally dependent on the topological charge of the incident light beam when passing through a triangular aperture. It is demonstrated that these patterns, which are accessed by observing the far-field measurement of the diffracted light, can also be obtained using few photon sources. In order to explain the observed patterns, we introduce an analogy of this optical phenomenon with the study of diffraction for the characterization of the crystal structure of solids. We demonstrate that the finite pattern can be associated with the reciprocal lattice obtained from the direct lattice generated by the primitive vectors composing any two of the sides of the equilateral triangular slit responsible for the diffraction. Using the relation that exists between the direct and reciprocal lattices, we provide a conclusive explanation as to why the diffraction pattern of the main maxima is finite. This can shed a new light on the investigation of crystallographic systems.

3.
PLoS One ; 15(7): e0236310, 2020.
Article in English | MEDLINE | ID: mdl-32730352

ABSTRACT

In this work we propose a data-driven age-structured census-based SIRD-like epidemiological model capable of forecasting the spread of COVID-19 in Brazil. We model the current scenario of closed schools and universities, social distancing of people above sixty years old and voluntary home quarantine to show that it is still not enough to protect the health system by explicitly computing the demand for hospital intensive care units. We also show that an urgent intense quarantine might be the only solution to avoid the collapse of the health system and, consequently, to minimize the quantity of deaths. On the other hand, we demonstrate that the relaxation of the already imposed control measures in the next days would be catastrophic.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Disease Transmission, Infectious/prevention & control , Models, Theoretical , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , Brazil/epidemiology , COVID-19 , Child , Child, Preschool , Coronavirus Infections/mortality , Coronavirus Infections/virology , Female , Forecasting , Humans , Infant , Infant, Newborn , Male , Middle Aged , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Prognosis , Quarantine/methods , SARS-CoV-2 , Young Adult
4.
Phys Rev Lett ; 124(21): 210501, 2020 May 29.
Article in English | MEDLINE | ID: mdl-32530693

ABSTRACT

Steady technological advances are paving the way for the implementation of the quantum internet, a network of locations interconnected by quantum channels. Here we propose a model to simulate a quantum internet based on optical fibers and employ network-theory techniques to characterize the statistical properties of the photonic networks it generates. Our model predicts a continuous phase transition between a disconnected and a highly connected phase and that the typical photonic networks do not present the small world property. We compute the critical exponents characterizing the phase transition, provide quantitative estimates for the minimum density of nodes needed to have a fully connected network and for the average distance between nodes. Our results thus provide quantitative benchmarks for the development of a quantum internet.

5.
Phys Rev Lett ; 122(20): 200401, 2019 May 24.
Article in English | MEDLINE | ID: mdl-31172755

ABSTRACT

The ability to witness nonlocal correlations lies at the core of foundational aspects of quantum mechanics and its application in the processing of information. Commonly, this is achieved via the violation of Bell inequalities. Unfortunately, however, their systematic derivation quickly becomes unfeasible as the scenario of interest grows in complexity. To cope with that, here, we propose a machine learning approach for the detection and quantification of nonlocality. It consists of an ensemble of multilayer perceptrons blended with genetic algorithms achieving a high performance in a number of relevant Bell scenarios. As we show, not only can the machine learn to quantify nonlocality, but discover new kinds of nonlocal correlations inaccessible with other current methods as well. We also apply our framework to distinguish between classical, quantum, and even postquantum correlations. Our results offer a novel method and a proof-of-principle for the relevance of machine learning for understanding nonlocality.

6.
Sci Rep ; 7: 39767, 2017 01 03.
Article in English | MEDLINE | ID: mdl-28045059

ABSTRACT

The concept of wave-particle duality, which is a key element of quantum theory, has been remarkably found to manifest itself in several experimental realizations as in the famous double-slit experiment. In this specific case, a single particle seems to travel through two separated slits simultaneously. Nevertheless, it is never possible to measure it in both slits, which naturally appears as a manifestation of the collapse postulate. In this respect, one could as well ask if it is possible to "perceive" the presence of the particle at the two slits simultaneously, once its collapse could be avoided. In this article, we use the recently proposed entanglement mediation protocol to provide a positive answer to this question. It is shown that a photon which behaves like a wave, i.e., which seems to be present in two distant locations at the same time, can modify two existing physical realities in these locations. Calculations of the "weak trace" left by such photon also enforce the validity of the present argumentation.

7.
Opt Lett ; 40(22): 5129-31, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26565816

ABSTRACT

In this Letter we numerically and experimentally demonstrated that a lattice with an optical vortex distributed over the entire lattice can be generated in the Fourier space using three higher-order Laguerre-Gauss beams placed at the vertices of an equilateral triangle in real space. In this scheme the optical vortice's lattice presents a topological defect in its central region. Probing the net topological charge of the whole lattice, we found that it corresponds to the topological charge associated with the orbital angular momentum of each beam in real space.

SELECTION OF CITATIONS
SEARCH DETAIL
...