Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol In Vitro ; 98: 105824, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614139

ABSTRACT

The TRPV1 receptor, which is known to contribute significantly to pain perception, has recently been identified as a useful tool for predicting eye stinging potential in cosmetics. In this study, HEK-293 cells with high TRPV1 expression were utilized to evaluate calcium influx related to receptor activation triggered by chemicals and cosmetic formulations. The cells were exposed to increasing concentrations of substances to cause or not some aggression to the eye, and TRPV1 activity was assessed by measuring intracellular FURA-2 AM fluorescence signal. To confirm TRPV1 channel activation, capsazepine, a capsaicin antagonist, was employed in addition to using capsaicin as a positive control. The study's results indicate that this novel model can identify compounds known to cause some aggression to the eye, such as stinging, considering a cut-off value of 60% of Ca2+ influx exposed to the lowest evaluated concentration (0.00032%). When applied to the cosmetic baby formulation, although the presented model exhibited higher sensitivity by classifying as stinging formulations that had previously undergone clinical testing and were deemed non-stinging, the assay could serve as a valuable in vitro tool for predicting human eye stinging sensation and can be used as a tier 1 in an integrated testing strategy.


Subject(s)
Calcium , Cosmetics , TRPV Cation Channels , Humans , Cosmetics/toxicity , HEK293 Cells , TRPV Cation Channels/metabolism , Calcium/metabolism , Eye/drug effects , Capsaicin/analogs & derivatives , Capsaicin/pharmacology , Animal Testing Alternatives
2.
Chemosphere ; 346: 140592, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37918535

ABSTRACT

Fish cell-based assays represent potential alternative methods to vertebrates' use in ecotoxicology. In this study, we evaluated the cytotoxicity of thirteen chemicals, chosen from OECD guidelines 236 and 249, in two zebrafish cell lines (ZEM2S and ZFL). We aimed to investigate whether the IC50 values obtained by viability assays (alamar blue, MTT, CFDA-AM, and neutral red) can predict the LC50 values of Acute Fish Toxicity (AFT) test and Fish Embryo Toxicity (FET) test. There was no significant difference between the values obtained by the different viability assays. ZFL strongly correlated with AFT and FET tests (R2AFT = 0.73-0.90; R2FET48h = 0.79-0.90; R2FET96h = 0.76-0.87), while ZEM2S correlated better with the FET test (48h) (R2 = 0.70-0.86) and weakly with AFT and FET tests (96h) (R2AFT = 0.68-0.74 and R2FET96h = 0.62-0.64). The predicted LC50 values allowed the correct categorization of the chemicals in 76.9% (AFT test) - 90.9% (FET test) using ZFL and in 30.7% (AFT test) - 63.6% (FET test) using ZEM2S considering the US EPA criterion for classifying acute aquatic toxicity. ZFL is a promising cell line to be used in alternative methods to adult fish and fish embryos in ecotoxicity assessments, and the method performed in 96-well plates is advantageous in promoting high-throughput cytotoxicity assessment.


Subject(s)
Embryo, Nonmammalian , Zebrafish , Animals , Embryo, Nonmammalian/metabolism , Toxicity Tests, Acute/methods , Liver , Cell Line
3.
J Appl Toxicol ; 42(12): 2016-2029, 2022 12.
Article in English | MEDLINE | ID: mdl-35883269

ABSTRACT

Aluminum chlorohydrate (ACH) is a major aerosol component frequently used as the active ingredient in antiperspirants, and in vivo studies have raised a concern about its inhalation toxicity. Still, few studies have addressed its effects on the human respiratory tract. Therefore, we developed a study on ACH inhalation toxicity using an in vitro human alveolar cell model (A549 cells) with molecular and cellular markers of oxidative stress, immunotoxicity, and epigenetic changes. The chemical characterization of ACH suspensions indicated particle instability and aggregation; however, side-scatter analysis demonstrated significant particle uptake in cells exposed to ACH. Exposure of A549 cells to non-cytotoxic concentrations of ACH (0.25, 0.5, and 1 mg/ml) showed that ACH induced reactive oxygen species. Moreover, ACH upregulated TNF, IL6, IL8, and IL1A genes, but not the lncRNAs NEAT1 and MALAT1. Finally, no alterations on the global DNA methylation pattern (5-methylcytosine and 5-hydroxymethylcytosine) or the phosphorylation of histone H2AX (γ-H2AX) were observed. Our data suggest that ACH may induce oxidative stress and inflammation on alveolar cells, and A549 cells may be useful to identify cellular and molecular events that may be associated with adverse effects on the lungs. Still, further research is needed to ensure the inhalation safety of ACH.


Subject(s)
Aluminum , Cosmetics , Humans , Administration, Inhalation , Aerosols , Pharmaceutical Vehicles , Inhalation Exposure/adverse effects
4.
Ecotoxicology ; 30(9): 1893-1909, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34379241

ABSTRACT

Fish cell spheroids are promising 3D culture models for vertebrate replacement in ecotoxicology. However, new alternative ecotoxicological methods must be adapted for applications in industry and for regulatory purposes; such methods must be cost-effective, simple to manipulate and provide rapid results. Therefore, we compared the effectiveness of the traditional hanging drop (HD), orbital shaking (OS), and HD combined with OS (HD+OS) methods on the formation of zebrafish cell line spheroids (ZFL and ZEM2S). Time in HD (3-5 days) and different 96-well plates [flat-bottom or ultra-low attachment of round-bottom (ULA-plates)] in OS were evaluated. Easy handling, rapid spheroid formation, uniform-sized spheroids, and circularity were assessed to identify the best spheroid protocol. Traditional HD alone did not result in ZFL spheroid formation, whereas HD (5 days)+OS did. When using the OS, spheroids only formed on the ULA-plate. Both HD+OS and OS were reproducible in size (177.50 ± 2.81 µm and 225.62 ± 19.20 µm, respectively) and circularity (0.83 ± 0.02 and 0.80 ± 0.01, respectively) of ZFL spheroids. Nevertheless, HD+OS required a considerable time to completely form spheroids (10 days) and intensive handling, whereas the OS was fast (5 days of incubation) and simple. OS also yielded reproducible ZEM2S spheroids in 1 day (226.23 ± 0.57 µm diameter and 0.80 ± 0.01 circularity). In conclusion, OS in ULA-plate is an effective and simple spheroid protocol for high-throughput ecotoxicity testing. This study contributes to identify a fast, reproducible, and simple protocol of single piscine spheroid formation in 96-well plates and supports the application of fish 3D model in industry and academia.


Subject(s)
Cell Culture Techniques , Zebrafish , Animals , Cell Line, Tumor , Liver , Spheroids, Cellular
5.
Regul Toxicol Pharmacol ; 124: 104976, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34139277

ABSTRACT

Dermal contact is the main route of exposure for most cosmetics; however, inhalation exposure could be significant for some formulations (e.g., aerosols, powders). Current cosmetic regulations do not require specific tests addressing respiratory irritation and sensitisation, and despite the prohibition of animal testing for cosmetics, no alternative methods have been validated to assess these endpoints to date. Inhalation hazard is mainly determined based on existing human and animal evidence, read-across, and extrapolation of data from different target organs or tissues, such as the skin. However, because of mechanistic differences, effects on the skin cannot predict effects on the respiratory tract, which indicates a substantial need for the development of new approach methodologies addressing respiratory endpoints for inhalable chemicals in general. Cosmetics might present a particularly significant need for risk assessments of inhalation exposure to provide a more accurate toxicological evaluation and ensure consumer safety. This review describes the differences in the mechanisms of irritation and sensitisation between the skin and the respiratory tract, the progress that has already been made, and what still needs to be done to fill the gap in the inhalation risk assessment of cosmetic ingredients.


Subject(s)
Consumer Product Safety/standards , Cosmetics/toxicity , Respiratory System/drug effects , Toxicity Tests/methods , Aerosols , Animal Testing Alternatives , Animals , Cosmetics/standards , Humans , Inhalation Exposure/adverse effects , Models, Animal , Powders , Risk Assessment/methods , Risk Assessment/standards , Toxicity Tests/standards
6.
J Appl Toxicol ; 41(10): 1687-1699, 2021 10.
Article in English | MEDLINE | ID: mdl-33624850

ABSTRACT

The safety assessment of cosmetic products is based on the safety of the ingredients, which requires information on chemical structures, toxicological profiles, and exposure data. Approximately 6% of the population is sensitized to cosmetic ingredients, especially preservatives and fragrances. In this context, the aim of this study was to perform a hazard assessment and risk characterization of benzalkonium chloride (BAC), benzyl alcohol (BA), caprylyl glycol (CG), ethylhexylglycerin (EG), chlorphenesin (CP), dehydroacetic acid (DHA), sodium dehydroacetate (SDH), iodopropynyl butylcarbamate (IPBC), methylchloroisothiazolinone and methylisothiazolinone (MCI/MIT), methylisothiazolinone (MIT), phenoxyethanol (PE), potassium sorbate (PS), and sodium benzoate (SB). Considering the integrated approaches to testing and assessment (IATA) and weight of evidence (WoE) as a decision tree, based on published safety reports. The hazard assessment was composed of a toxicological matrix correlating the toxicity level, defined as low (L), moderate (M), or high (H) and local or systemic exposure, considering the endpoints of skin sensitization, skin irritation, eye irritation, phototoxicity, acute oral toxicity, carcinogenicity, mutagenicity/genotoxicity, and endocrine activity. In a risk assessment approach, most preservatives had a margin of safety (MoS) above 100, except for DHA, SDH, and EG, considering the worst-case scenario (100% dermal absorption). However, isolated data do not set up a safety assessment. It is necessary to carry out a rational risk characterization considering hazard and exposure assessment to estimate the level of risk of an adverse health outcome, based on the concentration in a product, frequency of use, type of product, route of exposure, body surface location, and target population.


Subject(s)
Cosmetics/chemistry , Cosmetics/toxicity , Preservatives, Pharmaceutical/chemistry , Preservatives, Pharmaceutical/toxicity , Risk Assessment/methods , Toxicity Tests/methods , Consumer Product Safety , Dermatitis/diagnosis , Dermatitis, Phototoxic/diagnosis , Eye Diseases/diagnosis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...