Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 20(23)2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31771094

ABSTRACT

The toxin-antitoxin (TA) systems have been attracting attention due to their role in regulating stress responses in prokaryotes and their biotechnological potential. Much recognition has been given to type II TA system of mesophiles, while thermophiles have received merely limited attention. Here, we are presenting the putative type II TA families encoded on the genomes of four Geobacillus strains. We employed the TA finder tool to mine for TA-coding genes and manually curated the results using protein domain analysis tools. We also used the NCBI BLAST, Operon Mapper, ProOpDB, and sequence alignment tools to reveal the geobacilli TA features. We identified 28 putative TA pairs, distributed over eight TA families. Among the identified TAs, 15 represent putative novel toxins and antitoxins, belonging to the MazEF, MNT-HEPN, ParDE, RelBE, and XRE-COG2856 TA families. We also identified a potentially new TA composite, AbrB-ParE. Furthermore, we are suggesting the Geobacillus acetyltransferase TA (GacTA) family, which potentially represents one of the unique TA families with a reverse gene order. Moreover, we are proposing a hypothesis on the xre-cog2856 gene expression regulation, which seems to involve the c-di-AMP. This study aims for highlighting the significance of studying TAs in Geobacillus and facilitating future experimental research.


Subject(s)
Evolution, Molecular , Gene Expression Regulation, Bacterial/physiology , Geobacillus , Multigene Family/physiology , Toxin-Antitoxin Systems/physiology , Geobacillus/genetics , Geobacillus/metabolism
2.
Int J Mol Sci ; 19(9)2018 Sep 06.
Article in English | MEDLINE | ID: mdl-30200662

ABSTRACT

Lanthipeptides are ribosomally synthesized and post-translationally modified polycyclic peptides. Lanthipeptides that have antimicrobial activity are known as lantibiotics. Accordingly, the discovery of novel lantibiotics constitutes a possible solution for the problem of antibiotic resistance. We utilized the publicly available genome sequences and the bioinformatic tools tailored for the detection of lanthipeptides. We designed our strategy for screening of 252 firmicute genomes and detecting class-I lanthipeptide-coding gene clusters. The designed strategy resulted in identifying 69 class-I lanthipeptide sequences, of which more than 10% were putative novel. The identified putative novel lanthipeptides have not been annotated on the original or the RefSeq genomes, or have been annotated merely as coding for hypothetical proteins. Additionally, we identified bacterial strains that have not been previously recognized as lanthipeptide-producers. Moreover, we suggest corrections for certain firmicute genome annotations, and recommend lanthipeptide records for enriching the bacteriocin genome mining tool (BAGEL) databases. Furthermore, we propose Z-geobacillin, a putative class-I lanthipeptide coded on the genome of the thermophilic strain Geobacillus sp. ZGt-1. We provide lists of putative novel lanthipeptide sequences and of the previously unrecognized lanthipeptide-producing bacterial strains, so they can be prioritized for experimental investigation. Our results are expected to benefit researchers interested in the in vitro production of lanthipeptides.


Subject(s)
Bacteriocins/genetics , Computational Biology/methods , Geobacillus/genetics , Sequence Analysis, DNA/methods , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacteriocins/isolation & purification , Computer Simulation , Firmicutes/genetics , Genome, Bacterial , Molecular Sequence Annotation , Multigene Family
3.
Environ Microbiol ; 20(6): 2231-2240, 2018 06.
Article in English | MEDLINE | ID: mdl-29727053

ABSTRACT

Whether or not communities of microbial eukaryotes are structured in the same way as bacteria is a general and poorly explored question in ecology. Here, we investigated this question in a set of planktonic lake microbiotas in Eastern Antarctica that represent a natural community ecology experiment. Most of the analysed lakes emerged from the sea during the last 6000 years, giving rise to waterbodies that originally contained marine microbiotas and that subsequently evolved into habitats ranging from freshwater to hypersaline. We show that habitat diversification has promoted selection driven by the salinity gradient in bacterial communities (explaining ∼ 72% of taxa turnover), while microeukaryotic counterparts were predominantly structured by ecological drift (∼72% of the turnover). Nevertheless, we also detected a number of microeukaryotes with specific responses to salinity, indicating that albeit minor, selection has had a role in the structuring of specific members of their communities. In sum, we conclude that microeukaryotes and bacteria inhabiting the same communities can be structured predominantly by different processes. This should be considered in future studies aiming to understand the mechanisms that shape microbial assemblages.


Subject(s)
Bacteria/genetics , Eukaryota/genetics , Lakes/microbiology , Water Microbiology , Antarctic Regions , Bacteria/classification , Biota , Microbiota , Phylogeny , Plankton/microbiology , Prevalence
4.
Int J Mol Sci ; 17(8)2016 Aug 19.
Article in English | MEDLINE | ID: mdl-27548162

ABSTRACT

A thermophilic bacterial strain, Geobacillus sp. ZGt-1, isolated from Zara hot spring in Jordan, was capable of inhibiting the growth of the thermophilic G. stearothermophilus and the mesophilic Bacillus subtilis and Salmonella typhimurium on a solid cultivation medium. Antibacterial activity was not observed when ZGt-1 was cultivated in a liquid medium; however, immobilization of the cells in agar beads that were subjected to sequential batch cultivation in the liquid medium at 60 °C showed increasing antibacterial activity up to 14 cycles. The antibacterial activity was lost on protease treatment of the culture supernatant. Concentration of the protein fraction by ammonium sulphate precipitation followed by denaturing polyacrylamide gel electrophoresis separation and analysis of the gel for antibacterial activity against G. stearothermophilus showed a distinct inhibition zone in 15-20 kDa range, suggesting that the active molecule(s) are resistant to denaturation by SDS. Mass spectrometric analysis of the protein bands around the active region resulted in identification of 22 proteins with molecular weight in the range of interest, three of which were new and are here proposed as potential antimicrobial protein candidates by in silico analysis of their amino acid sequences. Mass spectrometric analysis also indicated the presence of partial sequences of antimicrobial enzymes, amidase, and dd-carboxypeptidase.


Subject(s)
Computational Biology/methods , Geobacillus/metabolism , Proteomics/methods , Anti-Infective Agents/chemistry , Anti-Infective Agents/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Hot Temperature
5.
Genome Biol Evol ; 8(5): 1361-73, 2016 05 12.
Article in English | MEDLINE | ID: mdl-27190205

ABSTRACT

The phylogenetic relationships among hemosporidian parasites, including the origin of Plasmodium falciparum, the most virulent malaria parasite of humans, have been heavily debated for decades. Studies based on multiple-gene sequences have helped settle many of these controversial phylogenetic issues. However, denser taxon sampling and genome-wide analyses are needed to confidently resolve the evolutionay relationships among hemosporidian parasites. Genome sequences of several Plasmodium parasites are available but only for species infecting primates and rodents. To root the phylogenetic tree of Plasmodium, genomic data from related parasites of birds or reptiles are required. Here, we use a novel approach to isolate parasite DNA from microgametes and describe the first genome of a bird parasite in the sister genus to Plasmodium, Haemoproteus tartakovskyi Similar to Plasmodium parasites, H. tartakovskyi has a small genome (23.2 Mb, 5,990 genes) and a GC content (25.4%) closer to P. falciparum (19.3%) than to Plasmodium vivax (42.3%). Combined with novel transcriptome sequences of the bird parasite Plasmodium ashfordi, our phylogenomic analyses of 1,302 orthologous genes demonstrate that mammalian-infecting malaria parasites are monophyletic, thus rejecting the repeatedly proposed hypothesis that the ancestor of Laverania parasites originated from a secondary host shift from birds to humans. Genes and genomic features previously found to be shared between P. falciparum and bird malaria parasites, but absent in other mammal malaria parasites, are therefore signatures of maintained ancestral states. We foresee that the genome of H. tartakovskyi will open new directions for comparative evolutionary analyses of malarial adaptive traits.


Subject(s)
Evolution, Molecular , Haemosporida/genetics , Malaria/parasitology , Phylogeny , Animals , Birds/parasitology , Haemosporida/pathogenicity , Humans , Malaria/genetics , Molecular Sequence Annotation , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity , Reptiles/parasitology , Sequence Alignment
6.
New Phytol ; 209(4): 1705-19, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26527297

ABSTRACT

Ectomycorrhizal fungi are thought to have a key role in mobilizing organic nitrogen that is trapped in soil organic matter (SOM). However, the extent to which ectomycorrhizal fungi decompose SOM and the mechanism by which they do so remain unclear, considering that they have lost many genes encoding lignocellulose-degrading enzymes that are present in their saprotrophic ancestors. Spectroscopic analyses and transcriptome profiling were used to examine the mechanisms by which five species of ectomycorrhizal fungi, representing at least four origins of symbiosis, decompose SOM extracted from forest soils. In the presence of glucose and when acquiring nitrogen, all species converted the organic matter in the SOM extract using oxidative mechanisms. The transcriptome expressed during oxidative decomposition has diverged over evolutionary time. Each species expressed a different set of transcripts encoding proteins associated with oxidation of lignocellulose by saprotrophic fungi. The decomposition 'toolbox' has diverged through differences in the regulation of orthologous genes, the formation of new genes by gene duplications, and the recruitment of genes from diverse but functionally similar enzyme families. The capacity to oxidize SOM appears to be common among ectomycorrhizal fungi. We propose that the ancestral decay mechanisms used primarily to obtain carbon have been adapted in symbiosis to scavenge nutrients instead.


Subject(s)
Fungi/physiology , Mycorrhizae/physiology , Organic Chemicals/analysis , Soil/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungi/genetics , Gene Expression Regulation, Fungal , Genes, Fungal , Laccase/metabolism , Lignin/metabolism , Oxidation-Reduction , Phylogeny , Secondary Metabolism/genetics , Transcription, Genetic
7.
Genome Announc ; 3(4)2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26205859

ABSTRACT

This paper reports the draft genome sequence of the firmicute Geobacillus sp. strain ZGt-1, an antibacterial peptide producer isolated from the Zara hot spring in Jordan. This study is the first report on genomic data from a thermophilic bacterial strain isolated in Jordan.

8.
PLoS One ; 10(5): e0125831, 2015.
Article in English | MEDLINE | ID: mdl-25946223

ABSTRACT

The dimeric metabolic enzyme phosphoglucose isomerase (PGI, EC 5.3.1.9) plays an essential role in energy production. In the grass Festuca ovina, field surveys of enzyme variation suggest that genetic variation at cytosolic PGI (PGIC) may be adaptively important. In the present study, we investigated the molecular basis of the potential adaptive significance of PGIC in F. ovina by analyzing cDNA sequence variation within the PgiC1 gene. Two, complementary, types of selection test both identified PGIC1 codon (amino acid) sites 200 and 173 as candidate targets of positive selection. Both candidate sites involve charge-changing amino acid polymorphisms. On the homology-modeled F. ovina PGIC1 3-D protein structure, the two candidate sites are located on the edge of either the inter-monomer boundary or the inter-domain cleft; examination of the homology-modeled PGIC1 structure suggests that the amino acid changes at the two candidate sites are likely to influence the inter-monomer interaction or the domain-domain packing. Biochemical studies in humans have shown that mutations at several amino acid sites that are located close to the candidate sites in F. ovina, at the inter-monomer boundary or the inter-domain cleft, can significantly change the stability and/or kinetic properties of the PGI enzyme. Molecular evolutionary studies in a wide range of other organisms suggest that PGI amino acid sites with similar locations to those of the candidate sites in F. ovina may be the targets of positive/balancing selection. Candidate sites 200 and 173 are the only sites that appear to discriminate between the two most common PGIC enzyme electromorphs in F. ovina: earlier studies suggest that these electromorphs are implicated in local adaptation to different grassland microhabitats. Our results suggest that PGIC1 sites 200 and 173 are under positive selection in F. ovina.


Subject(s)
Energy Metabolism/genetics , Festuca/enzymology , Festuca/genetics , Glucose-6-Phosphate Isomerase/genetics , Selection, Genetic/genetics , DNA, Complementary/genetics , Evolution, Molecular , Genes, Plant/genetics , Molecular Sequence Data , Polymorphism, Genetic/genetics
9.
Microbes Environ ; 30(1): 99-107, 2015.
Article in English | MEDLINE | ID: mdl-25739379

ABSTRACT

Next-generation sequencing of the V1-V2 and V3 variable regions of the 16S rRNA gene generated a total of 674,116 reads that described six distinct bacterial biofilm communities from both water meters and pipes. A high degree of reproducibility was demonstrated for the experimental and analytical work-flow by analyzing the communities present in parallel water meters, the rare occurrence of biological replicates within a working drinking water distribution system. The communities observed in water meters from households that did not complain about their drinking water were defined by sequences representing Proteobacteria (82-87%), with 22-40% of all sequences being classified as Sphingomonadaceae. However, a water meter biofilm community from a household with consumer reports of red water and flowing water containing elevated levels of iron and manganese had fewer sequences representing Proteobacteria (44%); only 0.6% of all sequences were classified as Sphingomonadaceae; and, in contrast to the other water meter communities, markedly more sequences represented Nitrospira and Pedomicrobium. The biofilm communities in pipes were distinct from those in water meters, and contained sequences that were identified as Mycobacterium, Nocardia, Desulfovibrio, and Sulfuricurvum. The approach employed in the present study resolved the bacterial diversity present in these biofilm communities as well as the differences that occurred in biofilms within a single distribution system, and suggests that next-generation sequencing of 16S rRNA amplicons can show changes in bacterial biofilm communities associated with different water qualities.


Subject(s)
Bacteria/isolation & purification , Biofilms/growth & development , Biota , Drinking Water/microbiology , Bacteria/classification , Bacteria/genetics , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sweden
10.
Nat Genet ; 47(4): 410-5, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25706625

ABSTRACT

To elucidate the genetic bases of mycorrhizal lifestyle evolution, we sequenced new fungal genomes, including 13 ectomycorrhizal (ECM), orchid (ORM) and ericoid (ERM) species, and five saprotrophs, which we analyzed along with other fungal genomes. Ectomycorrhizal fungi have a reduced complement of genes encoding plant cell wall-degrading enzymes (PCWDEs), as compared to their ancestral wood decayers. Nevertheless, they have retained a unique array of PCWDEs, thus suggesting that they possess diverse abilities to decompose lignocellulose. Similar functional categories of nonorthologous genes are induced in symbiosis. Of induced genes, 7-38% are orphan genes, including genes that encode secreted effector-like proteins. Convergent evolution of the mycorrhizal habit in fungi occurred via the repeated evolution of a 'symbiosis toolkit', with reduced numbers of PCWDEs and lineage-specific suites of mycorrhiza-induced genes.


Subject(s)
Genome, Fungal/genetics , Mycorrhizae/genetics , Selection, Genetic , Symbiosis/genetics , Virulence/genetics , Base Sequence , Evolution, Molecular , Gene Deletion , Gene Expression Regulation, Fungal/genetics , Molecular Sequence Data , Mycorrhizae/pathogenicity , Phylogeny , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Roots/microbiology
11.
BMC Genomics ; 15: 687, 2014 Aug 18.
Article in English | MEDLINE | ID: mdl-25135785

ABSTRACT

BACKGROUND: Array comparative genomic hybridization (aCGH) is commonly used to screen different types of genetic variation in humans and model species. Here, we performed aCGH using an oligonucleotide gene-expression array for a non-model species, the intertidal snail Littorina saxatilis. First, we tested what types of genetic variation can be detected by this method using direct re-sequencing and comparison to the Littorina genome draft. Secondly, we performed a genome-wide comparison of four closely related Littorina species: L. fabalis, L. compressa, L. arcana and L. saxatilis and of populations of L. saxatilis found in Spain, Britain and Sweden. Finally, we tested whether we could identify genetic variation underlying "Crab" and "Wave" ecotypes of L. saxatilis. RESULTS: We could reliably detect copy number variations, deletions and high sequence divergence (i.e. above 3%), but not single nucleotide polymorphisms. The overall hybridization pattern and number of significantly diverged genes were in close agreement with earlier phylogenetic reconstructions based on single genes. The trichotomy of L. arcana, L. compressa and L. saxatilis could not be resolved and we argue that these divergence events have occurred recently and very close in time. We found evidence for high levels of segmental duplication in the Littorina genome (10% of the transcripts represented on the array and up to 23% of the analyzed genomic fragments); duplicated genes and regions were mostly the same in all analyzed species. Finally, this method discriminated geographically distant populations of L. saxatilis, but we did not detect any significant genome divergence associated with ecotypes of L. saxatilis. CONCLUSIONS: The present study provides new information on the sensitivity and the potential use of oligonucleotide arrays for genotyping of non-model organisms. Applying this method to Littorina species yields insights into genome evolution following the recent species radiation and supports earlier single-gene based phylogenies. Genetic differentiation of L. saxatilis ecotypes was not detected in this study, despite pronounced innate phenotypic differences. The reason may be that these differences are due to single-nucleotide polymorphisms.


Subject(s)
Snails/genetics , Animals , Comparative Genomic Hybridization , DNA Copy Number Variations , Evolution, Molecular , Female , Gene Duplication , Genetic Speciation , Genetic Variation , Genome , Genotyping Techniques , Phylogeny , Polymorphism, Single Nucleotide
12.
New Phytol ; 200(3): 875-887, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23902518

ABSTRACT

Proteins contribute to a major part of the organic nitrogen (N) in forest soils. This N is mobilized and becomes available to trees as a result of the depolymerizing activities of symbiotic ectomycorrhizal fungi. The mechanisms by which these fungi depolymerize proteins and assimilate the released N are poorly characterized. Biochemical analysis and transcriptome profiling were performed to examine the proteolytic machinery and the uptake system of the ectomycorrhizal basidiomycete Paxillus involutus during the assimilation of organic N from various protein sources and extracts of organic matter. All substrates induced secretion of peptidase activity with an acidic pH optimum, mostly contributed by aspartic peptidases. The peptidase activity was transiently repressed by ammonium. Transcriptional analysis revealed a large number of extracellular endo- and exopeptidases. The expression levels of these peptidases were regulated in parallel with transporters and enzymes involved in the assimilation and metabolism of the released peptides and amino acids. For the first time the molecular components of the protein degradation pathways of an ectomycorrhizal fungus are described. The data suggest that the transcripts encoding these components are regulated in response to the chemical properties and the availability of the protein substrates.


Subject(s)
Basidiomycota/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Mycorrhizae/metabolism , Nitrogen/metabolism , Proteins/metabolism , Soil/chemistry , Ammonium Compounds/metabolism , Basidiomycota/enzymology , Basidiomycota/genetics , Endopeptidases/metabolism , Exopeptidases/metabolism , Fungal Proteins/genetics , Gene Expression Profiling , Hydrogen-Ion Concentration , Metabolic Networks and Pathways , Mycorrhizae/enzymology , Mycorrhizae/genetics , Polymers , Proteolysis , Soil Microbiology , Trees/metabolism
13.
BMC Genomics ; 14: 330, 2013 May 14.
Article in English | MEDLINE | ID: mdl-23672489

ABSTRACT

BACKGROUND: Animal migration requires adaptations in morphological, physiological and behavioural traits. Several of these traits have been shown to possess a strong heritable component in birds, but little is known about their genetic architecture. Here we used 454 sequencing of brain-derived transcriptomes from two differentially migrating subspecies of the willow warbler Phylloscopus trochilus to detect genes potentially underlying traits associated with migration. RESULTS: The transcriptome sequencing resulted in 1.8 million reads following filtering steps. Most of the reads (84%) were successfully mapped to the genome of the zebra finch Taeniopygia gutatta. The mapped reads were situated within at least 12,101 predicted zebra finch genes, with the greatest sequencing depth in exons. Reads that were mapped to intergenic regions were generally located close to predicted genes and possibly located in uncharacterized untranslated regions (UTRs). Out of 85,000 single nucleotide polymorphisms (SNPs) with a minimum sequencing depth of eight reads from each of two subspecies-specific pools, only 55 showed high differentiation, confirming previous studies showing that most of the genetic variation is shared between the subspecies. Validation of a subset of the most highly differentiated SNPs using Sanger sequencing demonstrated that several of them also were differentiated between an independent set of individuals of each subspecies. These SNPs were clustered in two chromosome regions that are likely to be influenced by divergent selection between the subspecies and that could potentially be associated with adaptations to their different migratory strategies. CONCLUSIONS: Our study represents the first large-scale sequencing analysis aiming at detecting genes underlying migratory phenotypes in birds and provides new candidates for genes potentially involved in migration.


Subject(s)
Animal Migration , Gene Expression Profiling , Passeriformes/genetics , Animals , Genomics , Molecular Sequence Annotation , Polymorphism, Single Nucleotide , Reproducibility of Results
14.
Evolution ; 66(9): 2723-38, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22946799

ABSTRACT

Understanding the drivers of speciation is critical to interpreting patterns of biodiversity. The identification of the genetic changes underlying adaptation and reproductive isolation is necessary to link barriers to gene flow to the causal origins of divergence. Here, we present a novel approach to the genetics of speciation, which should complement the commonly used approaches of quantitative trait locus mapping and genome-wide scans for selection. We present a large-scale candidate gene approach by means of sequence capture, applied to identifying the genetic changes underlying reproductive isolation in the pea aphid, a model system for the study of ecological speciation. Targeted resequencing enabled us to scale up the candidate gene approach, specifically testing for the role of chemosensory gene families in host plant specialization. Screening for the signature of divergence under selection at 172 candidate and noncandidate loci, we revealed a handful of loci that show high levels of differentiation among host races, which almost all correspond to odorant and gustatory receptor genes. This study offers the first indication that some chemoreceptor genes, often tightly linked together in the genome, could play a key role in local adaptation and reproductive isolation in the pea aphid and potentially other phytophagous insects. Our approach opens a new route toward the functional genomics of ecological speciation.


Subject(s)
Aphids/genetics , Genetic Speciation , Host Specificity , Receptors, Odorant/genetics , Selection, Genetic , Animals , Gene Frequency , Genes, Insect , Genetic Variation , Sequence Analysis, DNA
15.
Proc Biol Sci ; 279(1746): 4457-63, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-22951737

ABSTRACT

Mate choice for major histocompatibility complex (MHC) compatibility has been found in several taxa, although rarely in birds. MHC is a crucial component in adaptive immunity and by choosing an MHC-dissimilar partner, heterozygosity and potentially broad pathogen resistance is maximized in the offspring. The MHC genotype influences odour cues and preferences in mammals and fish and hence olfactory-based mate choice can occur. We tested whether blue petrels, Halobaena caerulea, choose partners based on MHC compatibility. This bird is long-lived, monogamous and can discriminate between individual odours using olfaction, which makes it exceptionally well suited for this analysis. We screened MHC class I and II B alleles in blue petrels using 454-pyrosequencing and quantified the phylogenetic, functional and allele-sharing similarity between individuals. Partners were functionally more dissimilar at the MHC class II B loci than expected from random mating (p = 0.033), whereas there was no such difference at the MHC class I loci. Phylogenetic and non-sequence-based MHC allele-sharing measures detected no MHC dissimilarity between partners for either MHC class I or II B. Our study provides evidence of mate choice for MHC compatibility in a bird with a high dependency on odour cues, suggesting that MHC odour-mediated mate choice occurs in birds.


Subject(s)
Birds/physiology , Genes, MHC Class II , Genes, MHC Class I , Mating Preference, Animal , Smell , Animals , Antarctic Regions , Birds/genetics , Exons , Female , Genotype , Indian Ocean Islands , Male , Polymerase Chain Reaction , Sequence Analysis, DNA
16.
Environ Microbiol ; 14(6): 1477-87, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22469289

ABSTRACT

Soils in boreal forests contain large stocks of carbon. Plants are the main source of this carbon through tissue residues and root exudates. A major part of the exudates are allocated to symbiotic ectomycorrhizal fungi. In return, the plant receives nutrients, in particular nitrogen from the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matter-protein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular enzymes needed for metabolizing the released carbon. The saprotrophic activity has been reduced to a radical-based biodegradation system that can efficiently disrupt the organic matter-protein complexes and thereby mobilize the entrapped nutrients. We suggest that the released carbon then becomes available for further degradation and assimilation by commensal microbes, and that these activities have been lost in ectomycorrhizal fungi as an adaptation to symbiotic growth on host photosynthate. The interdependence of ectomycorrhizal symbionts and saprophytic microbes would provide a key link in the turnover of nutrients and carbon in forest ecosystems.


Subject(s)
Agaricales/physiology , Hydrogen Peroxide/metabolism , Iron/metabolism , Soil Microbiology , Wood/metabolism , Agaricales/growth & development , Agaricales/metabolism , Biodegradation, Environmental , Carbon/metabolism , Ecosystem , Mycorrhizae/chemistry , Mycorrhizae/growth & development , Mycorrhizae/metabolism , Mycorrhizae/physiology , Nitrogen/metabolism , Plant Roots/metabolism , Plant Roots/microbiology , Plants/metabolism , Plants/microbiology , Symbiosis , Trees/metabolism , Trees/microbiology
17.
New Phytol ; 194(4): 1001-1013, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22463738

ABSTRACT

Parasitism and saprotrophic wood decay are two fungal strategies fundamental for succession and nutrient cycling in forest ecosystems. An opportunity to assess the trade-off between these strategies is provided by the forest pathogen and wood decayer Heterobasidion annosum sensu lato. We report the annotated genome sequence and transcript profiling, as well as the quantitative trait loci mapping, of one member of the species complex: H. irregulare. Quantitative trait loci critical for pathogenicity, and rich in transposable elements, orphan and secreted genes, were identified. A wide range of cellulose-degrading enzymes are expressed during wood decay. By contrast, pathogenic interaction between H. irregulare and pine engages fewer carbohydrate-active enzymes, but involves an increase in pectinolytic enzymes, transcription modules for oxidative stress and secondary metabolite production. Our results show a trade-off in terms of constrained carbohydrate decomposition and membrane transport capacity during interaction with living hosts. Our findings establish that saprotrophic wood decay and necrotrophic parasitism involve two distinct, yet overlapping, processes.


Subject(s)
Basidiomycota/genetics , Genome, Fungal , Host-Pathogen Interactions , Trees/microbiology , Wood/microbiology , Chromosome Mapping , Gene Expression Profiling , Molecular Sequence Data , Quantitative Trait Loci
18.
Microb Ecol ; 64(1): 8-17, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22286378

ABSTRACT

The phylogenetic structure and community composition were analysed in an existing data set of marine bacterioplankton communities to elucidate the evolutionary and ecological processes dictating the assembly. The communities were sampled from coastal waters at nine locations distributed worldwide and were examined through the use of comprehensive clone libraries of 16S ribosomal RNA genes. The analyses show that the local communities are phylogenetically different from each other and that a majority of them are phylogenetically clustered, i.e. the species (operational taxonomic units) were more related to each other than expected by chance. Accordingly, the local communities were assembled non-randomly from the global pool of available bacterioplankton. Further, the phylogenetic structures of the communities were related to the water temperature at the locations. In agreement with similar studies, including both macroorganisms and bacteria, these results suggest that marine bacterial communities are structured by "habitat filtering", i.e. through non-random colonization and invasion determined by environmental characteristics. Different bacterial types seem to have different ecological niches that dictate their survival in different habitats. Other eco-evolutionary processes that may contribute to the observed phylogenetic patterns are discussed. The results also imply a mapping between phenotype and phylogenetic relatedness which facilitates the use of community phylogenetic structure analysis to infer ecological and evolutionary assembly processes.


Subject(s)
Bacteria/genetics , Bacteria/isolation & purification , Ecosystem , Phylogeny , Seawater/microbiology , Bacteria/classification , DNA, Bacterial/genetics , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics
19.
Mol Ecol Resour ; 12(1): 142-8, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21707958

ABSTRACT

We present an interactive, searchable expressed sequence tag database for the periwinkle snail Littorina saxatilis, an upcoming model species in evolutionary biology. The database is the result of a hybrid assembly between Sanger and 454 sequences, 1290 and 147,491 sequences respectively. Normalized and non-normalized cDNA was obtained from different ecotypes of L. saxatilis collected in the UK and Sweden. The Littorina sequence database (LSD) contains 26,537 different contigs, of which 2453 showed similarity with annotated proteins in UniProt. Querying the LSD permits the selection of the taxonomic origin of blast hits for each contig, and the search can be restricted to particular taxonomic groups. The database allows access to UniProt annotations, blast output, protein family domains (PFAM) and Gene Ontology. The database will allow users to search for genetic markers and identifying candidate genes or genes for expression analyses. It is open for additional deposition of sequence information for L. saxatilis and other species of the genus Littorina. The LSD is available at http://mbio-serv2.mbioekol.lu.se/Littorina/.


Subject(s)
Databases, Genetic , Gastropoda/genetics , Genomics/instrumentation , Animals , Genetic Markers , Internet , Online Systems , User-Computer Interface
20.
Appl Environ Microbiol ; 78(5): 1361-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22194288

ABSTRACT

A bacterial community may be resistant to environmental disturbances if some of its species show metabolic flexibility and physiological tolerance to the changing conditions. Alternatively, disturbances can change the composition of the community and thereby potentially affect ecosystem processes. The impact of disturbance on the composition of bacterioplankton communities was examined in continuous seawater cultures. Bacterial assemblages from geographically closely connected areas, the Baltic Sea (salinity 7 and high dissolved organic carbon [DOC]) and Skagerrak (salinity 28 and low DOC), were exposed to gradual opposing changes in salinity and DOC over a 3-week period such that the Baltic community was exposed to Skagerrak salinity and DOC and vice versa. Denaturing gradient gel electrophoresis and clone libraries of PCR-amplified 16S rRNA genes showed that the composition of the transplanted communities differed significantly from those held at constant salinity. Despite this, the growth yields (number of cells ml(-1)) were similar, which suggests similar levels of substrate utilization. Deep 454 pyrosequencing of 16S rRNA genes showed that the composition of the disturbed communities had changed due to the recruitment of phylotypes present in the rare biosphere of the original community. The study shows that members of the rare biosphere can become abundant in a bacterioplankton community after disturbance and that those bacteria can have important roles in maintaining ecosystem processes.


Subject(s)
Bacteria/classification , Bacteria/genetics , Biota , Plankton/microbiology , Seawater/microbiology , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Denaturing Gradient Gel Electrophoresis , Molecular Sequence Data , Organic Chemicals/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Salinity , Seawater/chemistry , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...