Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 9561, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37308689

ABSTRACT

Originally considered to act as a transcriptional co-factor, Pirin has recently been reported to play a role in tumorigenesis and the malignant progression of many tumors. Here, we have analyzed the diagnostic and prognostic value of Pirin expression in the early stages of melanoma, and its role in the biology of melanocytic cells. Pirin expression was analyzed in a total of 314 melanoma biopsies, correlating this feature with the patient's clinical course. Moreover, PIR downregulated primary melanocytes were analyzed by RNA sequencing, and the data obtained were validated in human melanoma cell lines overexpressing PIR by functional assays. The immunohistochemistry multivariate analysis revealed that early melanomas with stronger Pirin expression were more than twice as likely to develop metastases during the follow-up. Transcriptome analysis of PIR downregulated melanocytes showed a dampening of genes involved in the G1/S transition, cell proliferation, and cell migration. In addition, an in silico approach predicted that JARID1B as a potential transcriptional regulator that lies between PIR and its downstream modulated genes, which was corroborated by co-transfection experiments and functional analysis. Together, the data obtained indicated that Pirin could be a useful marker for the metastatic progression of melanoma and that it participates in the proliferation of melanoma cells by regulating the slow-cycling JARID1B gene.


Subject(s)
Melanoma , Humans , Prognosis , Melanocytes , Biopsy , Transcription Factors , Cell Proliferation , Nuclear Proteins , Repressor Proteins , Jumonji Domain-Containing Histone Demethylases
2.
Cancers (Basel) ; 15(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37046835

ABSTRACT

This study set out to assess the performance of an artificial intelligence (AI) algorithm based on clinical data and dermatoscopic imaging for the early diagnosis of melanoma, and its capacity to define the metastatic progression of melanoma through serological and histopathological biomarkers, enabling dermatologists to make more informed decisions about patient management. Integrated analysis of demographic data, images of the skin lesions, and serum and histopathological markers were analyzed in a group of 196 patients with melanoma. The interleukins (ILs) IL-4, IL-6, IL-10, and IL-17A as well as IFNγ (interferon), GM-CSF (granulocyte and macrophage colony-stimulating factor), TGFß (transforming growth factor), and the protein DCD (dermcidin) were quantified in the serum of melanoma patients at the time of diagnosis, and the expression of the RKIP, PIRIN, BCL2, BCL3, MITF, and ANXA5 proteins was detected by immunohistochemistry (IHC) in melanoma biopsies. An AI algorithm was used to improve the early diagnosis of melanoma and to predict the risk of metastasis and of disease-free survival. Two models were obtained to predict metastasis (including "all patients" or only patients "at early stages of melanoma"), and a series of attributes were seen to predict the progression of metastasis: Breslow thickness, infiltrating BCL-2 expressing lymphocytes, and IL-4 and IL-6 serum levels. Importantly, a decrease in serum GM-CSF seems to be a marker of poor prognosis in patients with early-stage melanomas.

3.
Life (Basel) ; 13(1)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36676104

ABSTRACT

Background: The main purpose of this article is to introduce a universal mathematics-aided vaccine design method against malignant melanoma based on neoantigens. The universal method can be adapted to the mutanome of each patient so that a specific candidate vaccine can be tailored for the corresponding patient. Methods: We extracted the 1134 most frequent mutations in melanoma, and we associated each of them to a vector with 10 components estimated with different bioinformatics tools, for which we found an aggregated value according to a set of weights, and then we ordered them in decreasing order of the scores. Results: We prepared a universal table of the most frequent mutations in melanoma ordered in decreasing order of viability to be used as candidate vaccines, so that the selection of a set of appropriate peptides for each particular patient can be easily and quickly implemented according to their specific mutanome and transcription profile. Conclusions: We have shown that the techniques that are commonly used for the design of personalized anti-tumor vaccines against malignant melanoma can be adapted for the design of universal rankings of neoantigens that originate personalized vaccines when the mutanome and transcription profile of specific patients is considered, with the consequent savings in time and money, shortening the design and production time.

4.
PLoS One ; 15(3): e0230136, 2020.
Article in English | MEDLINE | ID: mdl-32168325

ABSTRACT

Analyzing the mutational load of driver mutations in melanoma could provide valuable information regarding its progression. We aimed at analyzing the heterogeneity of mutational load of BRAF V600E in biopsies of melanoma patients of different stages, and investigating its potential as a prognosis factor. Mutational load of BRAF V600E was analyzed by digital PCR in 78 biopsies of melanoma patients of different stages and 10 nevi. The BRAF V600E load was compared among biopsies of different stages. Results showed a great variability in the load of V600E (0%-81%). Interestingly, we observed a significant difference in the load of V600E between the early and late melanoma stages, in the sense of an inverse correlation between BRAF V600E mutational load and melanoma progression. In addition, a machine learning approach showed that the mutational load of BRAF V600E could be a good predictor of metastasis in stage II patients. Our results suggest that BRAF V600E is a promising biomarker of prognosis in stage II patients.


Subject(s)
Biomarkers, Tumor/genetics , Melanoma , Proto-Oncogene Proteins B-raf/genetics , Adult , Aged , Aged, 80 and over , DNA Mutational Analysis/methods , Female , Humans , Machine Learning , Male , Melanoma/genetics , Melanoma/pathology , Middle Aged , Mutation , Neoplasm Metastasis , Nevus, Pigmented , Prognosis , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Melanoma, Cutaneous Malignant
SELECTION OF CITATIONS
SEARCH DETAIL
...