Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674970

ABSTRACT

The technological properties of composite materials (thermal, strength, rheology, electrical and morphology) are very important parameters for high-performance applications. In this study, we aimed to improve the properties of PVA by using carbon materials obtained by the pyrolysis of waste tires, with the aim of recycling them instead of disposing of them. For this purpose, PVA biocomposite films containing carbonized waste rubber at different rates were prepared. The thermal properties of the prepared biocomposite films were examined via thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) methods. While rheological measurements were carried out with a rheometer, bulk conductivities were measured with a pico-ammeter. In addition, the morphology of biocomposite films was determined via field emission scanning electron microscopy. The nanomechanical properties of biocomposite film was investigated via XPM analyses. According to the rheological measurements and nanoindentation hardness results, it is understood that as the amount of carbonized waste rubber increases, flexibility decreases and harder and brittle structures are observed in biocomposite films. The electrical measurement results showed that electrical conductivity increased as the amount of carbonized waste rubber increased. When all the results obtained were evaluated, it could be concluded that biocomposite films obtained by increasing the electrical conductivity and hardness of PVA can be used in the electronics industry.

2.
Int J Biol Macromol ; 267(Pt 1): 131189, 2024 May.
Article in English | MEDLINE | ID: mdl-38554924

ABSTRACT

The current study presents the synergistic effects of fibrillated cellulose (FC) and nickel-titanium (NiTi) alloy on the performance properties of smart composites. Epoxy resin was reinforced with loadings of 1 %, 3 %, and 5 % FC and 3 % NiTi. The composites were produced using the casting method. The morphological properties have been analyzed using scanning electron microscopy (SEM). For mechanical properties, yield strength, modulus of elasticity, hardness, and impact energy were determined. The corrosion rate was determined via electrochemical corrosion testing. The recovery test was used to measure the shape-memory of the composites. The self-healing of the artificial defect in the composites was observed using a thermal camera. The yield strength, modulus of elasticity, hardness, and impact energy of composites reinforced with 5 % FC and 3 % NiTi increased by 168.2 %, 290 %, 33.3 %, and 114.3 %, respectively, compared to pure epoxy resin. There has been a 56.3 % decrease in the corrosion rate. The percentage of composites that returned from the final state to the original state after a deformation was 4 %. Self-healing analysis revealed that the scratch defect in composites was healed after 24 h. It is concluded that smart composites can be used in the aviation and automotive industries.


Subject(s)
Alloys , Cellulose , Nickel , Titanium , Cellulose/chemistry , Nickel/chemistry , Titanium/chemistry , Alloys/chemistry , Corrosion , Materials Testing , Epoxy Resins/chemistry , Hardness
3.
Micromachines (Basel) ; 14(7)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37512761

ABSTRACT

The rapid population growth, increasing global energy demand, climate change, and excessive use of fossil fuels have adversely affected environmental management and sustainability. Furthermore, the requirements for a safer ecology and environment have necessitated the use of renewable materials, thereby solving the problem of sustainability of resources. In this perspective, lignocellulosic biomass is an attractive natural resource because of its abundance, renewability, recyclability, and low cost. The ever-increasing developments in nanotechnology have opened up new vistas in sensor fabrication such as biosensor design for electronics, communication, automobile, optical products, packaging, textile, biomedical, and tissue engineering. Due to their outstanding properties such as biodegradability, biocompatibility, non-toxicity, improved electrical and thermal conductivity, high physical and mechanical properties, high surface area and catalytic activity, lignocellulosic bionanomaterials including nanocellulose and nanolignin emerge as very promising raw materials to be used in the development of high-impact biosensors. In this article, the use of lignocellulosic bionanomaterials in biosensor applications is reviewed and major challenges and opportunities are identified.

4.
Int J Biol Macromol ; 233: 123546, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36740120

ABSTRACT

Biocomposites are widely used in construction, packaging, and automotive applications such as seatbacks, door panels, headliners, and dashboards, as well as industrial composting. The purpose of this study is to look into the effects of three different boron compounds (borax boric, acid combines, zinc borate, and ulexite) on the mechanical and microstructural properties of flax fiber/PLA biocomposites at different water uptake times. 7 different biocomposites were studied for this purpose: control, 3UF, 5UF, 3ZBF, 3BxBcF, 5BxBcF, and 5ZBF. Extrusion was used to create homogenous chopped flax fiber-reinforced PLA biocomposites, which were then injection molded. Alkali treatment on flax fiber surfaces was applied to improve interfacial adhesion between fiber and matrix. Water uptake tests were performed at room temperature for soaking times of 24, 50, 168, 240, 330, 480, 550, 600, and 750 h. The addition of boron compounds increases water gain from 4.4 % to 6.1 %, according to sorption results. The tensile elongation at break values of the composites increased slightly after short-term water absorption. SEM images showed that alkali-treated flax fibers and boron compounds dispersed uniformly in the PLA matrix. After 750 h of immersion, the addition of boron fillers to PLA/flax composite increased Young's Modulus and flexural modulus by about 50 % and 72 %, respectively, in comparison to the control composite sample. The addition of boric acid: borax combines into the PLA/flax composite slowed the rate of decline in tensile and flexural strength after various immersion times. Finally, using MINITAB software, the experimental results were subjected to a one-way analysis of variance (ANOVA).


Subject(s)
Flax , Polyesters , Polyesters/chemistry , Water/chemistry , Flax/chemistry , Borates
5.
Int J Biol Macromol ; 113: 98-105, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29438751

ABSTRACT

Lignin-based nanofibers were produced via centrifugal spinning from lignin-thermoplastic polyurethane polymer blends. The most suitable process parameters were chosen by optimization of the rotational speed, nozzle diameter and spinneret-to-collector distance using different blend ratios of the two polymers at different total polymer concentrations. The basic characteristics of polymer solutions were enlightened by their viscosity and surface tension. The morphology of the fibers produced was characterized by SEM, while their thermal properties by DSC and TG analysis. Multiply regression was used to determine the parameters that have higher impact on the fiber diameter. It was possible to obtain thermally stable lignin/polyurethane nanofibers with diameters below 500nm. From the aspect of spinnability, 1:1 lignin/TPU contents were shown to be more feasible. On the other side, the most suitable processing parameters were found to be angular velocity of 8500rpm for nozzles of 0.5mm diameter and working distance of 30cm.


Subject(s)
Centrifugation , Lignin/chemistry , Nanofibers/chemistry , Nanotechnology/methods , Temperature
6.
Int J Biol Macromol ; 104(Pt A): 384-392, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28602986

ABSTRACT

This study reports on the effects of organic polyvinyl alcohol (PVA) and inorganic silica polymer on properties of Celluclast-treated nanofibrillated cellulose composites. Nanofibrillated cellulose was isolated from Eucalyptus camaldulensis and prior to high-pressure homogenizing was pretreated with Celluclast enzyme in order to lower energy consumption. Three nanocomposite films were fabricated via the casting process: nanofibrillated cellulose (CNF), nanocellulose-PVA (CNF-P) and nanocellulose-silica (CNF-Si). Chemical characterization, crystallization and thermal stability were determined using FT-IR and TGA. Morphological alterations were monitored with SEM. The Young's and storage moduli of the nanocomposites were determined via a universal testing machine and DTMA. The real and imaginary parts of permittivity and electric modulus were evaluated using an impedance analyzer. The crystallinity values of the nanocomposites calculated from the FT-IR were in agreement with the TGA results, showing that the lowest crystallinity value was in the CNF-Si. The CNF-P displayed the highest tensile strength. At a high temperature interval, the storage modulus of the CNF-Si was greater than that of the CNF or CNF-P. The CNF-Si also exhibited a completed singular relaxation process, while the CNF and the CNF-P processes were uncompleted. Consequently, in terms of industrial applications, although the CNF-P composite had mechanical advantages, the CNF-Si composite displayed the best thermo-mechanical properties.


Subject(s)
Cellulase/metabolism , Cellulose/chemistry , Nanocomposites/chemistry , Nanofibers/chemistry , Polyvinyl Alcohol/chemistry , Silicon Dioxide/chemistry , Temperature , Electric Impedance , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...