Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 839, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987278

ABSTRACT

Clostridioides difficile causes a wide range of intestinal diseases through the action of two main cytotoxins, TcdA and TcdB. Ingested spores germinate in the intestine establishing a population of cells that produce toxins and spores. The pathogenicity locus, PaLoc, comprises several genes, including those coding for TcdA/B, for the holin-like TcdE protein, and for TcdR, an auto-regulatory RNA polymerase sigma factor essential for tcdA/B and tcdE expression. Here we show that tcdR, tcdA, tcdB and tcdE are expressed in a fraction of the sporulating cells, in either the whole sporangium or in the forespore. The whole sporangium pattern is due to protracted expression initiated in vegetative cells by σD, which primes the TcdR auto-regulatory loop. In contrast, the forespore-specific regulatory proteins σG and SpoVT control TcdR production and tcdA/tcdB and tcdE expression in this cell. We detected TcdA at the spore surface, and we show that wild type and ΔtcdA or ΔtcdB spores but not ΔtcdR or ΔtcdA/ΔtcdB spores are cytopathic against HT29 and Vero cells, indicating that spores may serve as toxin-delivery vehicles. Since the addition of TcdA and TcdB enhance binding of spores to epithelial cells, this effect may occur independently of toxin production by vegetative cells.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Spores, Bacterial , Spores, Bacterial/metabolism , Spores, Bacterial/genetics , Clostridioides difficile/genetics , Clostridioides difficile/metabolism , Bacterial Toxins/metabolism , Bacterial Toxins/genetics , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Animals , Chlorocebus aethiops , Vero Cells , Enterotoxins/metabolism , Enterotoxins/genetics
2.
Toxins (Basel) ; 16(1)2024 01 11.
Article in English | MEDLINE | ID: mdl-38251254

ABSTRACT

The major virulence factors of Clostridioides difficile (C. difficile) are enterotoxins A (TcdA) and B (TcdB). The study of toxins is a crucial step in exploring the virulence of this pathogen. Currently, the toxin purification process is either laborious and time-consuming in C. difficile or performed in heterologous hosts. Therefore, we propose a streamlined method to obtain functional toxins in C. difficile. Two C. difficile strains were generated, each harboring a sequence encoding a His-tag at the 3' end of C. difficile 630∆erm tcdA or tcdB genes. Each toxin gene is expressed using the Ptet promoter, which is inducible by anhydro-tetracycline. The obtained purification yields were 0.28 mg and 0.1 mg per liter for rTcdA and rTcdB, respectively. In this study, we successfully developed a simple routine method that allows the production and purification of biologically active rTcdA and rTcdB toxins with similar activities compared to native toxins.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Clostridioides difficile/genetics , Bacterial Toxins/genetics , Bacterial Toxins/toxicity , Enterotoxins/genetics , Enterotoxins/toxicity , Virulence Factors , Anti-Bacterial Agents
3.
Front Microbiol ; 14: 1267662, 2023.
Article in English | MEDLINE | ID: mdl-37965542

ABSTRACT

Introduction: The dlt operon encodes proteins responsible for the esterification of positively charged D-alanine on the wall teichoic acids and lipoteichoic acids of Gram-positive bacteria. This structural modification of the bacterial anionic surface in several species has been described to alter the physicochemical properties of the cell-wall. In addition, it has been linked to reduced sensibilities to cationic antimicrobial peptides and antibiotics. Methods: We studied the D-alanylation of Clostridioides difficile polysaccharides with a complete deletion of the dltDABCoperon in the 630 strain. To look for D-alanylation location, surface polysaccharides were purified and analyzed by NMR. Properties of the dltDABCmutant and the parental strains, were determined for bacterial surface's hydrophobicity, motility, adhesion, antibiotic resistance. Results: We first confirmed the role of the dltDABCoperon in D-alanylation. Then, we established the exclusive esterification of D-alanine on C. difficile lipoteichoic acid. Our data also suggest that D-alanylation modifies the cell-wall's properties, affecting the bacterial surface's hydrophobicity, motility, adhesion to biotic and abiotic surfaces,and biofilm formation. In addition, our mutant exhibitedincreased sensibilities to antibiotics linked to the membrane, especially bacitracin. A specific inhibitor DLT-1 of DltA reduces the D-alanylation rate in C. difficile but the inhibition was not sufficient to decrease the antibiotic resistance against bacitracin and vancomycin. Conclusion: Our results suggest the D-alanylation of C. difficile as an interesting target to tackle C. difficile infections.

4.
ACS Bio Med Chem Au ; 3(5): 438-447, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37876495

ABSTRACT

Mycobacterium tuberculosis drug resistance is emerging and new drug targets are needed. Tryptophan biosynthesis is necessary for M. tuberculosis replication and virulence. Indole-3-glycerol phosphate synthase (IGPS) catalyzes a step in M. tuberculosis tryptophan biosynthesis and has been suggested as a potential anti-infective target, but our understanding of this enzyme is limited. To aid in inhibitor design and gain a greater mechanistic picture of this enzyme, there is a need to understand the roles of active site amino acids in ligand binding and catalysis. In this work, we explored the roles of conserved active site amino acids Glu57, Lys59, Lys119, Glu168, and Glu219. Mutation of each to Ala results in loss of all detectable activity. The Glu57Gln, Lys59Arg, Lys119Arg, Glu168Gln, and Glu219Asp mutations result in large activity losses, while Glu219Gln has enhanced activity. Analysis of the enzymatic data yields the following main conclusions: (A) Lys119 is the likely catalytic acid in the CdRP ring closure step. (B) Glu168 stabilizes a charged reaction intermediate and may also be the catalytic base. (C) Glu57, Glu219, and Lys119 form a closely arranged triad in which Glu57 and Glu219 modulate the pKa of Lys119, and thus overall activity. This increased understanding of inter- and intramolecular interactions and demonstration of the highly coordinated nature of the M. tuberculosis IGPS active site provide new mechanistic information and guidance for future work with this potential new drug target.

5.
Microbiol Spectr ; : e0422722, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36815772

ABSTRACT

Cell wall glycopolymers (CWPGs) in Gram-positive bacteria have been reported to be involved in several bacterial processes. These polymers, pillars for proteins and S-layer, are essential for the bacterial surface setup, could be essential for growth, and, in pathogens, participate most often in virulence. CWGPs are covalently anchored to peptidoglycan by proteins that belong to the LytR-CpsA-PSr (LCP) family. This anchoring, important for growth, was reported as essential for some bacteria such as Bacillus subtilis, but the reason why CWGP anchoring is essential remains unknown. We studied LcpA and LcpB of Clostridioides difficile and showed that they have a redundant activity. To delete both lcp genes, we set up the first conditional-lethal mutant method in C. difficile and showed that polysaccharide II (PSII) anchoring at the bacterial surface is essential for C. difficile survival. In the conditional-lethal mutant, C. difficile morphology was impaired, suggesting that peptidoglycan synthesis was affected. Because Lcp proteins are transferring CWPGs from the C55-undecaprenyl phosphate (also needed in the peptidoglycan synthesis process), we assumed that there was competition between PSII and peptidoglycan synthesis pathways. We confirmed that UDP-MurNAc-pentapeptide precursor was accumulated, showing that peptidoglycan synthesis was blocked. Our results provide an explanation for the essentiality of PSII anchoring in C. difficile and suggest that the essentiality of the anchoring of CWPGs in other bacteria can also be explained by the blocking of peptidoglycan synthesis. To conclude, our results suggest that Lcps are potential new targets to combat C. difficile infection. IMPORTANCE Cell wall glycopolymers (CWGPs) in Gram-positive bacteria have been reported to be involved in several bacterial processes. CWGP anchoring to peptidoglycan is important for growth and virulence. We set up the first conditional-lethal mutant method in Clostridioides difficile to study LcpA and LcpB involved in the anchoring of CWPGs to peptidoglycan. This study offers new tools to reveal the role of essential genes in C. difficile. LcpA and LcpB activity was shown to be essential, suggesting that they are potential new targets to combat C. difficile infection. In this study, we also showed that there is competition between the polysaccharide II synthesis pathway and peptidoglycan synthesis that probably exists in other Gram-positive bacteria. A better understanding of these mechanisms allows us to define the Lcp proteins as a therapeutic target for potential design of novel antibiotics against pathogenic Gram-positive bacteria.

6.
Curr Opin Microbiol ; 65: 156-161, 2022 02.
Article in English | MEDLINE | ID: mdl-34883390

ABSTRACT

The cortex and peptidoglycan of Clostridioides difficile have been poorly investigated. This last decade, the interest increased because these two structures are highly modified and these modifications may be involved in antimicrobial resistance. For example, C. difficile peptidoglycan deacetylation was recently reported to be involved in lysozyme resistance. Modifications may also be important for spore cortex synthesis or spore germination, which is essential in C. difficile pathogenesis. As such, the enzymes responsible for modifications of the peptidoglycan and/or cortex could be new drug target candidates or used as anti-C. difficile agents, as seen for the CD11 autolysin. In this review, we focus on C. difficile peptidoglycan and cortex and compare their structures with those of other well studied bacteria.


Subject(s)
Clostridioides difficile , Peptidoglycan , Bacterial Proteins/analysis , Bacterial Proteins/genetics , Cell Wall/chemistry , Clostridioides , Clostridioides difficile/genetics , Spores, Bacterial
7.
mBio ; 12(3)2021 05 18.
Article in English | MEDLINE | ID: mdl-34006648

ABSTRACT

Cell growth and division require a balance between synthesis and hydrolysis of the peptidoglycan (PG). Inhibition of PG synthesis or uncontrolled PG hydrolysis can be lethal for the cells, making it imperative to control peptidoglycan hydrolase (PGH) activity. The synthesis or activity of several key enzymes along the PG biosynthetic pathway is controlled by the Hanks-type serine/threonine kinases (STKs). In Gram-positive bacteria, inactivation of genes encoding STKs is associated with a range of phenotypes, including cell division defects and changes in cell wall metabolism, but only a few kinase substrates and associated mechanisms have been identified. We previously demonstrated that STK-PrkC plays an important role in cell division, cell wall metabolism, and resistance to antimicrobial compounds in the human enteropathogen Clostridioides difficile In this work, we characterized a PG hydrolase, CwlA, which belongs to the NlpC/P60 family of endopeptidases and hydrolyses cross-linked PG between daughter cells to allow cell separation. We identified CwlA as the first PrkC substrate in C. difficile We demonstrated that PrkC-dependent phosphorylation inhibits CwlA export, thereby controlling hydrolytic activity in the cell wall. High levels of CwlA at the cell surface led to cell elongation, whereas low levels caused cell separation defects. Thus, we provided evidence that the STK signaling pathway regulates PGH homeostasis to precisely control PG hydrolysis during cell division.IMPORTANCE Bacterial cells are encased in a PG exoskeleton that helps to maintain cell shape and confers physical protection. To allow bacterial growth and cell separation, PG needs to be continuously remodeled by hydrolytic enzymes that cleave PG at critical sites. How these enzymes are regulated remains poorly understood. We identify a new PG hydrolase involved in cell division, CwlA, in the enteropathogen C. difficile Lack or accumulation of CwlA at the bacterial surface is responsible for a division defect, while its accumulation in the absence of PrkC also increases susceptibility to antimicrobial compounds targeting the cell wall. CwlA is a substrate of the kinase PrkC in C. difficile PrkC-dependent phosphorylation controls the export of CwlA, modulating its levels and, consequently, its activity in the cell wall. This work provides a novel regulatory mechanism by STK in tightly controlling protein export.


Subject(s)
Bacterial Proteins/metabolism , Cell Division/genetics , Clostridioides difficile/metabolism , N-Acetylmuramoyl-L-alanine Amidase/genetics , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Bacterial Proteins/genetics , Cell Division/physiology , Clostridioides difficile/enzymology , Clostridioides difficile/genetics , Peptidoglycan/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/genetics
8.
J Biol Chem ; 295(49): 16785-16796, 2020 12 04.
Article in English | MEDLINE | ID: mdl-32978253

ABSTRACT

Clostridium difficile is an anaerobic and spore-forming bacterium responsible for 15-25% of postantibiotic diarrhea and 95% of pseudomembranous colitis. Peptidoglycan is a crucial element of the bacterial cell wall that is exposed to the host, making it an important target for the innate immune system. The C. difficile peptidoglycan is largely N-deacetylated on its glucosamine (93% of muropeptides) through the activity of enzymes known as N-deacetylases, and this N-deacetylation modulates host-pathogen interactions, such as resistance to the bacteriolytic activity of lysozyme, virulence, and host innate immune responses. C. difficile genome analysis showed that 12 genes potentially encode N-deacetylases; however, which of these N-deacetylases are involved in peptidoglycan N-deacetylation remains unknown. Here, we report the enzymes responsible for peptidoglycan N-deacetylation and their respective regulation. Through peptidoglycan analysis of several mutants, we found that the N-deacetylases PdaV and PgdA act in synergy. Together they are responsible for the high level of peptidoglycan N-deacetylation in C. difficile and the consequent resistance to lysozyme. We also characterized a third enzyme, PgdB, as a glucosamine N-deacetylase. However, its impact on N-deacetylation and lysozyme resistance is limited, and its physiological role remains to be dissected. Finally, given the influence of peptidoglycan N-deacetylation on host defense against pathogens, we investigated the virulence and colonization ability of the mutants. Unlike what has been shown in other pathogenic bacteria, a lack of N-deacetylation in C. difficile is not linked to a decrease in virulence.


Subject(s)
Bacterial Proteins/metabolism , Clostridioides difficile/enzymology , Host-Pathogen Interactions/physiology , Hydrolases/metabolism , Peptidoglycan/analysis , Acylation , Animals , Bacterial Proteins/genetics , Cell Wall/metabolism , Clostridioides difficile/drug effects , Clostridioides difficile/genetics , Clostridioides difficile/pathogenicity , Clostridium Infections/mortality , Clostridium Infections/pathology , Clostridium Infections/veterinary , Cricetinae , Female , Glucosamine/metabolism , Hydrolases/genetics , Immunity, Innate , Kaplan-Meier Estimate , Microbial Sensitivity Tests , Muramidase/metabolism , Muramidase/pharmacology , Mutagenesis , Peptidoglycan/metabolism , Virulence/genetics
9.
Arch Biochem Biophys ; 692: 108545, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32810476

ABSTRACT

Many antibacterial and antiparasitic drugs work by competitively inhibiting dihydrofolate reductase (DHFR), a vital enzyme in folate metabolism. The interactions between inhibitors and DHFR active site residues are known in many homologs but the contributions from distal residues are less understood. Identifying distal residues that aid in inhibitor binding can improve targeted drug development programs by accounting for distant influences that may be less conserved and subject to frequent resistance causing mutations. Previously, a novel, homology-based, computational approach that mines ligand inhibition data was used to predict residues involved in inhibitor selectivity in the DHFR family. Expectedly, some inhibitor selectivity determining residue positions were predicted to lie in the active site and coincide with experimentally known inhibitor selectivity determining positions. However, other residues that group spatially in clusters distal to the active site have not been previously investigated. In this study, the effect of introducing amino acid substitutions at one of these predicted clusters (His38-Ala39-Ile40) on the inhibitor selectivity profile in Bacillus stearothermophilus dihydrofolate reductase (Bs DHFR) was investigated. Mutations were introduced into these cluster positions to change sidechain chemistry and size. We determined kcat and KM values and measured KD values at equilibrium for two competitive DHFR inhibitors, trimethoprim (TMP) and pyrimethamine (PYR). Mutations in the His38-Ala39-Ile40 cluster significantly impacted inhibitor binding and TMP/PYR selectivity - seven out of nine mutations resulted in tighter binding to PYR when compared to TMP. These data suggest that the His38-Ala39-Ile40 cluster is a distal inhibitor selectivity determining region that favors PYR binding in Bs DHFR and, possibly, throughout the DHFR family.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Folic Acid Antagonists/chemistry , Geobacillus stearothermophilus/enzymology , Mutation, Missense , Tetrahydrofolate Dehydrogenase/chemistry , Amino Acid Substitution , Bacterial Proteins/genetics , Geobacillus stearothermophilus/genetics , Tetrahydrofolate Dehydrogenase/genetics
10.
Microbiology (Reading) ; 166(6): 567-578, 2020 06.
Article in English | MEDLINE | ID: mdl-32375990

ABSTRACT

Clostridium difficile 630 possesses a cryptic but functional gene cluster vanGCd homologous to the vanG operon of Enterococcus faecalis. Expression of vanGCd in the presence of subinhibitory concentrations of vancomycin is accompanied by peptidoglycan amidation on the meso-DAP residue. In this paper, we report the presence of two potential asparagine synthetase genes named asnB and asnB2 in the C. difficile genome whose products were potentially involved in this peptidoglycan structure modification. We found that asnB expression was only induced when C. difficile was grown in the presence of vancomycin, yet independently from the vanGCd resistance and regulation operons. In addition, peptidoglycan precursors were not amidated when asnB was inactivated. No change in vancomycin MIC was observed in the asnB mutant strain. In contrast, overexpression of asnB resulted in the amidation of most of the C. difficile peptidoglycan precursors and in a weak increase of vancomycin susceptibility. AsnB activity was confirmed in E. coli. In contrast, the expression of the second asparagine synthetase, AsnB2, was not induced in the presence of vancomycin. In summary, our results demonstrate that AsnB is responsible for peptidoglycan amidation of C. difficile in the presence of vancomycin.


Subject(s)
Anti-Bacterial Agents/pharmacology , Aspartate-Ammonia Ligase/metabolism , Bacterial Proteins/metabolism , Clostridioides difficile/drug effects , Clostridioides difficile/enzymology , Peptidoglycan/metabolism , Vancomycin/pharmacology , Aspartate-Ammonia Ligase/genetics , Bacterial Proteins/genetics , Clostridioides difficile/genetics , Drug Resistance, Bacterial , Gene Expression Regulation, Bacterial , Genome, Bacterial , Multigene Family , Operon
12.
J Exp Med ; 217(3)2020 03 02.
Article in English | MEDLINE | ID: mdl-31891367

ABSTRACT

In humans, several grams of IgA are secreted every day in the intestinal lumen. While only one IgA isotype exists in mice, humans secrete IgA1 and IgA2, whose respective relations with the microbiota remain elusive. We compared the binding patterns of both polyclonal IgA subclasses to commensals and glycan arrays and determined the reactivity profile of native human monoclonal IgA antibodies. While most commensals are dually targeted by IgA1 and IgA2 in the small intestine, IgA1+IgA2+ and IgA1-IgA2+ bacteria coexist in the colon lumen, where Bacteroidetes is preferentially targeted by IgA2. We also observed that galactose-α terminated glycans are almost exclusively recognized by IgA2. Although bearing signs of affinity maturation, gut-derived IgA monoclonal antibodies are cross-reactive in the sense that they bind to multiple bacterial targets. Private anticarbohydrate-binding patterns, observed at clonal level as well, could explain these apparently opposing features of IgA, being at the same time cross-reactive and selective in its interactions with the microbiota.

13.
Infect Immun ; 87(8)2019 08.
Article in English | MEDLINE | ID: mdl-31085703

ABSTRACT

Clostridium difficile is the leading cause of antibiotic-associated diarrhea in adults. During infection, C. difficile must detect the host environment and induce an appropriate survival strategy. Signal transduction networks involving serine/threonine kinases (STKs) play key roles in adaptation, as they regulate numerous physiological processes. PrkC of C. difficile is an STK with two PASTA domains. We showed that PrkC is membrane associated and is found at the septum. We observed that deletion of prkC affects cell morphology with an increase in mean size, cell length heterogeneity, and presence of abnormal septa. A ΔprkC mutant was able to sporulate and germinate but was less motile and formed more biofilm than the wild-type strain. Moreover, a ΔprkC mutant was more sensitive to antimicrobial compounds that target the cell envelope, such as the secondary bile salt deoxycholate, cephalosporins, cationic antimicrobial peptides, and lysozyme. This increased susceptibility was not associated with differences in peptidoglycan or polysaccharide II composition. However, the ΔprkC mutant had less peptidoglycan and released more polysaccharide II into the supernatant. A proteomic analysis showed that the majority of C. difficile proteins associated with the cell wall were less abundant in the ΔprkC mutant than the wild-type strain. Finally, in a hamster model of infection, the ΔprkC mutant had a colonization delay that did not significantly affect overall virulence.


Subject(s)
Bacterial Proteins/physiology , Clostridioides difficile/drug effects , Protein Serine-Threonine Kinases/physiology , Animals , Cell Wall/metabolism , Clostridioides difficile/metabolism , Clostridioides difficile/pathogenicity , Cricetinae , Drug Resistance, Bacterial , Homeostasis , Mesocricetus , Microbial Sensitivity Tests , Peptidoglycan/metabolism , Protein Serine-Threonine Kinases/genetics , Virulence
14.
Mol Microbiol ; 111(6): 1416-1429, 2019 06.
Article in English | MEDLINE | ID: mdl-30548239

ABSTRACT

The extracellular biofilm matrix often contains a network of amyloid fibers which, in the human opportunistic pathogen Bacillus cereus, includes the two homologous proteins TasA and CalY. We show here, in the closely related entomopathogenic species Bacillus thuringiensis, that CalY also displays a second function. In the early stationary phase of planktonic cultures, CalY was located at the bacterial cell-surface, as shown by immunodetection. Deletion of calY revealed that this protein plays a major role in adhesion to HeLa epithelial cells, to the insect Galleria mellonella hemocytes and in the bacterial virulence against larvae of this insect, suggesting that CalY is a cell-surface adhesin. In mid-stationary phase and in biofilms, the location of CalY shifted from the cell surface to the extracellular medium, where it was found as fibers. The transcription study and the deletion of sipW suggested that CalY change of location is due to a delayed activity of the SipW signal peptidase. Using purified CalY, we found that the protein polymerization occurred only in the presence of cell-surface components. CalY is, therefore, a bifunctional protein, which switches from a cell-surface adhesin activity in early stationary phase, to the production of fibers in mid-stationary phase and in biofilms.


Subject(s)
Adhesins, Bacterial/metabolism , Bacillus thuringiensis/genetics , Biofilms/growth & development , Metalloproteases/metabolism , Virulence Factors/metabolism , Adhesins, Bacterial/genetics , Animals , Bacillus thuringiensis/enzymology , Bacterial Adhesion , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Extracellular Polymeric Substance Matrix/genetics , Extracellular Polymeric Substance Matrix/metabolism , HeLa Cells , Hemocytes/microbiology , Humans , Larva/microbiology , Metalloproteases/genetics , Moths/microbiology , Virulence Factors/genetics
15.
J Biol Chem ; 293(47): 18040-18054, 2018 11 23.
Article in English | MEDLINE | ID: mdl-30266804

ABSTRACT

Spores are produced by many organisms as a survival mechanism activated in response to several environmental stresses. Bacterial spores are multilayered structures, one of which is a peptidoglycan layer called the cortex, containing muramic-δ-lactams that are synthesized by at least two bacterial enzymes, the muramoyl-l-alanine amidase CwlD and the N-deacetylase PdaA. This study focused on the spore cortex of Clostridium difficile, a Gram-positive, toxin-producing anaerobic bacterial pathogen that can colonize the human intestinal tract and is a leading cause of antibiotic-associated diarrhea. Using ultra-HPLC coupled with high-resolution MS, here we found that the spore cortex of the C. difficile 630Δerm strain differs from that of Bacillus subtilis Among these differences, the muramic-δ-lactams represented only 24% in C. difficile, compared with 50% in B. subtilis CD630_14300 and CD630_27190 were identified as genes encoding the C. difficile N-deacetylases PdaA1 and PdaA2, required for muramic-δ-lactam synthesis. In a pdaA1 mutant, only 0.4% of all muropeptides carried a muramic-δ-lactam modification, and muramic-δ-lactams were absent in the cortex of a pdaA1-pdaA2 double mutant. Of note, the pdaA1 mutant exhibited decreased sporulation, altered germination, decreased heat resistance, and delayed virulence in a hamster infection model. These results suggest a much greater role for muramic-δ-lactams in C. difficile than in other bacteria, including B. subtilis In summary, the spore cortex of C. difficile contains lower levels of muramic-δ-lactams than that of B. subtilis, and PdaA1 is the major N-deacetylase for muramic-δ-lactam biosynthesis in C. difficile, contributing to sporulation, heat resistance, and virulence.


Subject(s)
Amidohydrolases/metabolism , Bacterial Proteins/metabolism , Clostridioides difficile/enzymology , Lactams/metabolism , Muramic Acids/metabolism , Spores, Bacterial/growth & development , Amidohydrolases/genetics , Animals , Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Clostridioides difficile/chemistry , Clostridioides difficile/genetics , Clostridioides difficile/growth & development , Clostridium Infections/microbiology , Cricetinae , Female , Hot Temperature , Humans , Mesocricetus , Spores, Bacterial/chemistry , Spores, Bacterial/enzymology
16.
Front Microbiol ; 9: 100, 2018.
Article in English | MEDLINE | ID: mdl-29491848

ABSTRACT

The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria) is formed of a cytoplasmic membrane (CM) and a cell wall (CW). While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG) covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO) for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226), i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658), i.e., the lipoproteins. At the CW (GO: 0009275), cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed.

17.
Int J Antimicrob Agents ; 50(3): 496-500, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28663118

ABSTRACT

Clostridium difficile T10 and Clostridium bolteae 90B3 were co-resistant to phenicols, lincosamides, oxazolidinones, pleuromutilins and streptogramin A (PhLOPSA) and harbored an unreported cfr-like determinant that may alter the 23S rRNA by m8A2503 methylation. The cfr-like cfr(C) gene was cloned in C. difficile 630Δerm in which it conferred PhLOPSA resistance. In C. bolteae 90B3: (i) qRT-PCR analysis indicated that cfr(C) was similarly expressed in the absence or presence of either chloramphenicol or clindamycin or linezolid; and (ii) cfr(C) was part of a putative 24 kb-transposon, which generated a detectable circular intermediate. An element differing by a single nucleotide was found in C. difficile DA00203 from GenBank data, consistent with a recent horizontal transfer. In silico analysis showed cfr(C) in 19 out of 274 C. difficile genomes. This gene was also detected by PCR analysis in 9 out of 80 C. difficile from our laboratory strain collection according to resistance to linezolid and florfenicol. The fact that cfr(C) was mainly confined in C. difficile within polymorphic environments indicates this microorganism is a reservoir for PhLOPSA resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Clostridioides difficile/drug effects , Clostridioides difficile/genetics , Drug Resistance, Bacterial , Genes, Bacterial , Linezolid/pharmacology , tRNA Methyltransferases/genetics , Clostridium Infections/epidemiology , Clostridium Infections/microbiology , Gene Expression Profiling , Humans , Microbial Sensitivity Tests , Polymerase Chain Reaction , Prevalence , RNA, Ribosomal, 23S/metabolism
18.
PLoS One ; 10(4): e0124971, 2015.
Article in English | MEDLINE | ID: mdl-25922949

ABSTRACT

Clostridium difficile is responsible for 15-20% of antibiotic-associated diarrheas, and nearly all cases of pseudomembranous colitis. Among the cell wall proteins involved in the colonization process, Cwp84 is a protease that cleaves the S-layer protein SlpA into two subunits. A cwp84 mutant was previously shown to be affected for in vitro growth but not in its virulence in a hamster model. In this study, the cwp84 mutant elaborated biofilms with increased biomass compared with the parental strain, allowing the mutant to grow more robustly in the biofilm state. Proteomic analyses of the 630Δerm bacteria growing within the biofilm revealed the distribution of abundant proteins either in cell surface, matrix or supernatant fractions. Of note, the toxin TcdA was found in the biofilm matrix. Although the overall proteome differences between the cwp84 mutant and the parental strains were modest, there was still a significant impact on bacterial surface properties such as altered hydrophobicity. In vitro and in vivo competition assays revealed that the mutant was significantly impaired for growth only in the planktonic state, but not in biofilms or in vivo. Taken together, our results suggest that the phenotypes in the cwp84 mutant come from either the accumulation of uncleaved SlpA, or the ability of Cwp84 to cleave as yet undetermined proteins.


Subject(s)
Clostridioides difficile/physiology , Cysteine Endopeptidases/metabolism , Animals , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Biofilms , Cysteine Endopeptidases/genetics , Enterotoxins/metabolism , Gastrointestinal Tract/microbiology , Hydrophobic and Hydrophilic Interactions , Membrane Glycoproteins/metabolism , Mice , Microscopy, Electron , Mutation , Proteome/metabolism , Proteomics
19.
Mol Microbiol ; 96(3): 596-608, 2015 May.
Article in English | MEDLINE | ID: mdl-25649385

ABSTRACT

Gram-positive surface proteins can be covalently or non-covalently anchored to the cell wall and can impart important properties on the bacterium in respect of cell envelope organisation and interaction with the environment. We describe here a mechanism of protein anchoring involving tandem CWB2 motifs found in a large number of cell wall proteins in the Firmicutes. In the Clostridium difficile cell wall protein family, we show the three tandem repeats of the CWB2 motif are essential for correct anchoring to the cell wall. CWB2 repeats are non-identical and cannot substitute for each other, as shown by the secretion into the culture supernatant of proteins containing variations in the patterns of repeats. A conserved Ile Leu Leu sequence within the CWB2 repeats is essential for correct anchoring, although a preceding proline residue is dispensable. We propose a likely genetic locus encoding synthesis of the anionic polymer PSII and, using RNA knock-down of key genes, reveal subtle effects on cell wall composition. We show that the anionic polymer PSII binds two cell wall proteins, SlpA and Cwp2, and these interactions require the CWB2 repeats, defining a new mechanism of protein anchoring in Gram-positive bacteria.


Subject(s)
Amino Acid Motifs , Cell Wall/metabolism , Clostridioides difficile/metabolism , Membrane Proteins/metabolism , Polysaccharides, Bacterial/metabolism , Gene Knockdown Techniques , Protein Binding , Repetitive Sequences, Amino Acid
20.
Anaerobe ; 30: 193-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25242197

ABSTRACT

The biofilm is a microbial community embedded in a synthesized matrix and is the main bacterial way of life. A biofilm adheres on surfaces or is found on interfaces. It protects bacteria from the environment, toxic molecules and may have a role in virulence. Clostridium species are spread throughout both environments and hosts, but their biofilms have not been extensively described in comparison with other bacterial species. In this review we describe all biofilms formed by Clostridium species during both industrial processes and in mammals where biofilms may be formed either during infections or associated to microbiota in the gut. We have specifically focussed on Clostridium difficile and Clostridium perfringens biofilms, which have been studied in vitro. Regulatory processes including sporulation and germination highlight how these Clostridium species live in biofilms. Furthermore, biofilms may have a role in the survival and spreading of Clostridium species.


Subject(s)
Biofilms/growth & development , Clostridioides difficile/physiology , Clostridium perfringens/physiology , Animals , Clostridioides difficile/genetics , Clostridium perfringens/genetics , Environmental Microbiology , Gene Expression Regulation, Bacterial , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL