Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Biomed Mater ; 18(6)2023 10 19.
Article in English | MEDLINE | ID: mdl-37751763

ABSTRACT

Human tissues are characterized by complex composition and cellular and extracellular matrix (ECM) organization at microscopic level. In most of human tissues, cells and ECM show an anisotropic arrangement, which confers them specific properties.In vitro, the ability to closely mimic this complexity is limited. However, in the last years, extrusion bioprinting showed a certain potential for aligning cells and biomolecules, due to the application of shear stress during the bio-fabrication process. In this work, we propose a strategy to combine collagen (col) with tyramine-modified hyaluronic acid (THA) to obtain a printable col-THA bioink for extrusion bioprinting, solely-based on natural-derived components. Collagen fibers formation within the hybrid hydrogel, as well as collagen distribution and spatial organization before and after printing, were studied. For the validation of the biological outcome, fibroblasts were selected as cellular model and embedded in the col-THA matrix. Cell metabolic activity and cell viability, as well as cell distribution and alignment, were studied in the bioink before and after bioprinting. Results demonstrated successful collagen fibers formation within the bioink, as well as collagen anisotropic alignment along the printing direction. Furthermore, results revealed suitable biological properties, with a slightly reduced metabolic activity at day 1, fully recovered within the first 3 d post-cell embedding. Finally, results showed fibroblasts elongation and alignment along the bioprinting direction. Altogether, results validated the potential to obtain collagen-based bioprinted constructs, with both cellular and ECM anisotropy, without detrimental effects of the fabrication process on the biological outcome. This bioink can be potentially used for a wide range of applications in tissue engineering and regenerative medicine in which anisotropy is required.


Subject(s)
Bioprinting , Tissue Scaffolds , Humans , Hyaluronic Acid , Printing, Three-Dimensional , Collagen , Tissue Engineering/methods , Bioprinting/methods
2.
J Biol Eng ; 17(1): 49, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37491322

ABSTRACT

In recent decades, human mesenchymal stem cells (hMSCs) have gained momentum in the field of cell therapy for treating cartilage and bone injuries. Despite the tri-lineage multipotency, proliferative properties, and potent immunomodulatory effects of hMSCs, their clinical potential is hindered by donor variations, limiting their use in medical settings. To address this challenge, gene delivery technologies have emerged as a promising approach to modulate the phenotype and commitment of hMSCs towards specific cell lineages, thereby enhancing osteochondral repair strategies. This review provides a comprehensive overview of current non-viral gene delivery approaches used to engineer MSCs, highlighting key factors such as the choice of nucleic acid or delivery vector, transfection strategies, and experimental parameters. Additionally, it outlines various protocols and methods for qualitative and quantitative evaluation of their therapeutic potential as a delivery system in osteochondral regenerative applications. In summary, this technical review offers a practical guide for optimizing non-viral systems in osteochondral regenerative approaches. hMSCs constitute a key target population for gene therapy techniques. Nevertheless, there is a long way to go for their translation into clinical treatments. In this review, we remind the most relevant transfection conditions to be optimized, such as the type of nucleic acid or delivery vector, the transfection strategy, and the experimental parameters to accurately evaluate a delivery system. This survey provides a practical guide to optimizing non-viral systems for osteochondral regenerative approaches.

3.
Biomater Sci ; 11(8): 2699-2710, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36722890

ABSTRACT

Mucoadhesive buccal patches are dosage forms promising for successful drug delivery. They show the distinctive advantages of long residence time on the oral mucosa and increased in situ drug bioavailability. In this context, electrophoretic deposition (EPD) of chitosan (CS) has been demonstrated as a simple and easily tunable technique to produce mucoadhesive buccal patches. However, CS-based buccal patches may suffer from weak mucoadhesion, which can impair their therapeutic effect. In this work, methylcellulose (MC), a widely investigated biopolymer in the biomedical area, was exploited to increase the mucoadhesive characteristic of pristine CS patches. CS-MC patches were obtained in a one-pot process via EPD, and the possibility of incorporating gentamicin sulfate (GS) as a model of a broad-spectrum antibiotic in the so-obtained patches was investigated. The resulting CS-MC patches showed high stability in a water environment and superior mucoadhesive characteristic (σadh = 0.85 ± 0.26 kPa, Wadh = 1192.28 ± 602.36 Pa mm) when compared with the CS control samples (σadh = 0.42 ± 0.22 kPa, Wadh = 343.13 ± 268.89 Pa mm), due to both the control of the patch porosity and the bioadhesive nature of MC. Furthermore, GS-loaded patches showed no in vitro cytotoxic effects by challenging L929 cells with material extracts and noteworthy antibacterial activity on both Gram-positive and Gram-negative bacterial strains.


Subject(s)
Chitosan , Methylcellulose , Drug Delivery Systems/methods , Biological Availability , Mouth
4.
Eur J Remote Sens ; 56(1)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38239331

ABSTRACT

The spaceborne imaging spectroscopy mission PRecursore IperSpettrale della Missione Applicativa (PRISMA), launched on 22 March 2019 by the Italian Space Agency, opens new opportunities in many scientific domains, including precision farming and sustainable agriculture. This new Earth Observation (EO) data stream requires new-generation approaches for the estimation of important biophysical crop variables (BVs). In this framework, this study evaluated a hybrid approach, combining the radiative transfer model PROSAIL-PRO and several machine learning (ML) regression algorithms, for the retrieval of canopy chlorophyll content (CCC) and canopy nitrogen content (CNC) from synthetic PRISMA data. PRISMA-like data were simulated from two images acquired by the airborne sensor HyPlant, during a campaign performed in Grosseto (Italy) in 2018. CCC and CNC estimations, assessed from the best performing ML algorithms, were used to define two relations with plant nitrogen uptake (PNU). CNC proved to be slightly more correlated to PNU than CCC (R2 = 0.82 and R2 = 0.80, respectively). The CNC-PNU model was then applied to actual PRISMA images acquired in 2020. The results showed that the estimated PNU values are within the expected ranges, and the temporal trends are compatible with plant phenology stages.

5.
Lab Chip ; 23(1): 136-145, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36477137

ABSTRACT

Transfection describes the delivery of exogenous nucleic acids (NAs) to cells utilizing non-viral means. In the last few decades, scientists have been doing their utmost to design ever more effective transfection reagents. These are eventually mixed with NAs to give rise to gene delivery complexes, which must undergo characterization, testing, and further refinement through the sequential reiteration of these steps. Unfortunately, although microfluidics offers distinct advantages over the canonical approaches to preparing particles, the systems available do not address the most frequent and practical quest for the simultaneous generation of multiple polymer-to-NA ratios (N/Ps). Herein, we developed a user-friendly microfluidic cartridge to repeatably prepare non-viral gene delivery particles and screen across a range of seven N/Ps at once or significant volumes of polyplexes at a given N/P. The microchip is equipped with a chaotic serial dilution generator for the automatic linear dilution of the polymer to the downstream area, which encompasses the NA divider to dispense equal amounts of DNA to the mixing area, enabling the formation of particles at seven N/Ps eventually collected in individual built-in tanks. This is the first example of a stand-alone microfluidic cartridge for the fast and repeatable preparation of non-viral gene delivery complexes at different N/Ps and their storage.


Subject(s)
Gene Transfer Techniques , Microfluidics , Transfection , DNA , Polymers
6.
J Mater Sci Mater Med ; 34(1): 3, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36586059

ABSTRACT

Cell microencapsulation has been utilized for years as a means of cell shielding from the external environment while facilitating the transport of gases, general metabolites, and secretory bioactive molecules at once. In this light, hydrogels may support the structural integrity and functionality of encapsulated biologics whereas ensuring cell viability and function and releasing potential therapeutic factors once in situ. In this work, we describe a straightforward strategy to fabricate silk fibroin (SF) microgels (µgels) and encapsulate cells into them. SF µgels (size ≈ 200 µm) were obtained through ultrasonication-induced gelation of SF in a water-oil emulsion phase. A thorough physicochemical (SEM analysis, and FT-IR) and mechanical (microindentation tests) characterization of SF µgels were carried out to assess their nanostructure, porosity, and stiffness. SF µgels were used to encapsulate and culture L929 and primary myoblasts. Interestingly, SF µgels showed a selective release of relatively small proteins (e.g., VEGF, molecular weight, MW = 40 kDa) by the encapsulated primary myoblasts, while bigger (macro)molecules (MW = 160 kDa) were hampered to diffusing through the µgels. This article provided the groundwork to expand the use of SF hydrogels into a versatile platform for encapsulating relevant cells able to release paracrine factors potentially regulating tissue and/or organ functions, thus promoting their regeneration.


Subject(s)
Fibroins , Microgels , Fibroins/chemistry , Cell Encapsulation , Spectroscopy, Fourier Transform Infrared , Hydrogels/chemistry , Silk
8.
Remote Sens (Basel) ; 14(8): 1792, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-36081596

ABSTRACT

In the next few years, the new Copernicus Hyperspectral Imaging Mission (CHIME) is foreseen to be launched by the European Space Agency (ESA). This missions will provide an unprecedented amount of hyperspectral data, enabling new research possibilities within several fields of natural resources, including the "agriculture and food security" domain. In order to efficiently exploit this upcoming hyperspectral data stream, new processing methods and techniques need to be studied and implemented. In this work, the hybrid approach (HYB) and its variant, featuring sampling dimensionality reduction through active learning heuristics (HAL), were applied to CHIME-like data to evaluate the retrieval of crop traits, such as chlorophyll and nitrogen content at both leaf (LCC and LNC) and canopy level (CCC and CNC). The results showed that HYB was able to provide reliable estimations at canopy level (R2 = 0.79, RMSE = 0.38 g m-2 for CCC and R2 = 0.84, RMSE = 1.10 g m-2 for CNC) but failed at leaf level. The HAL approach improved retrieval accuracy at canopy level (best metric: R2 = 0.88 and RMSE = 0.21 g m-2 for CCC; R2 = 0.93 and RMSE = 0.71 g m-2 for CNC), providing good results also at leaf level (best metrics: R2 = 0.72 and RMSE = 3.31 µg cm-2 for LCC; R2 = 0.56 and RMSE = 0.02 mg cm-2 for LNC). The promising results obtained through the hybrid approach support the feasibility of an operational retrieval of chlorophyll and nitrogen content, e.g., in the framework of the future CHIME mission. However, further efforts are required to investigate the approach across different years, sites and crop types in order to improve its transferability to other contexts.

9.
ISPRS J Photogramm Remote Sens ; 187: 362-377, 2022 May.
Article in English | MEDLINE | ID: mdl-36093126

ABSTRACT

The recently launched and upcoming hyperspectral satellite missions, featuring contiguous visible-to-shortwave infrared spectral information, are opening unprecedented opportunities for the retrieval of a broad set of vegetation traits with enhanced accuracy through novel retrieval schemes. In this framework, we exploited hyperspectral data cubes collected by the new-generation PRecursore IperSpettrale della Missione Applicativa (PRISMA) satellite of the Italian Space Agency to develop and test a hybrid retrieval workflow for crop trait mapping. Crop traits were mapped over an agricultural area in north-east Italy (Jolanda di Savoia, FE) using PRISMA images collected during the 2020 and 2021 vegetative seasons. Leaf chlorophyll content, leaf nitrogen content, leaf water content and the corresponding canopy level traits scaled through leaf area index were estimated using a hybrid retrieval scheme based on PROSAIL-PRO radiative transfer simulations coupled with a Gaussian processes regression algorithm. Active learning algorithms were used to optimise the initial set of simulated data by extracting only the most informative samples. The accuracy of the proposed retrieval scheme was evaluated against a broad ground dataset collected in 2020 in correspondence of three PRISMA overpasses. The results obtained were positive for all the investigated variables. At the leaf level, the highest accuracy was obtained for leaf nitrogen content (LNC: r2=0.87, nRMSE=7.5%), while slightly worse results were achieved for leaf chlorophyll content (LCC: r2=0.67, nRMSE=11.7%) and leaf water content (LWC: r2=0.63, nRMSE=17.1%). At the canopy level, a significantly higher accuracy was observed for nitrogen content (CNC: r2=0.92, nRMSE=5.5%) and chlorophyll content (CCC: r2=0.82, nRMSE=10.2%), whereas comparable results were obtained for water content (CWC: r2=0.61, nRMSE=16%). The developed models were additionally tested against an independent dataset collected in 2021 to evaluate their robustness and exportability. The results obtained (i. e., LCC: r2=0.62, nRMSE=27.9%; LNC: r2=0.35, nRMSE=28.4%; LWC: r2=0.74, nRMSE=20.4%; LAI: r2=0.84, nRMSE=14.5%; CCC: r2=0.79, nRMSE=18.5%; CNC: r2=0.62, nRMSE=23.7%; CWC: r2=0.92, nRMSE=16.6%) evidence the transferability of the hybrid approach optimised through active learning for most of the investigated traits. The developed models were then used to map the spatial and temporal variability of the crop traits from the PRISMA images. The high accuracy and consistency of the results demonstrates the potential of spaceborne imaging spectroscopy for crop monitoring, paving the path towards routine retrievals of multiple crop traits over large areas that could drive more effective and sustainable agricultural practices worldwide.

10.
J Nanobiotechnology ; 20(1): 363, 2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35933375

ABSTRACT

BACKGROUND: With the success of recent non-viral gene delivery-based COVID-19 vaccines, nanovectors have gained some public acceptance and come to the forefront of advanced therapies. Unfortunately, the relatively low ability of the vectors to overcome cellular barriers adversely affects their effectiveness. Scientists have thus been striving to develop ever more effective gene delivery vectors, but the results are still far from satisfactory. Therefore, developing novel strategies is probably the only way forward to bring about genuine change. Herein, we devise a brand-new gene delivery strategy to boost dramatically the transfection efficiency of two gold standard nucleic acid (NA)/polymer nanoparticles (polyplexes) in vitro. RESULTS: We conceived a device to generate milli-to-nanoscale vibrational cues as a function of the frequency set, and deliver vertical uniaxial displacements to adherent cells in culture. A short-lived high-frequency vibrational load (t = 5 min, f = 1,000 Hz) caused abrupt and extensive plasmalemma outgrowths but was safe for cells as neither cell proliferation rate nor viability was affected. Cells took about 1 hr to revert to quasi-naïve morphology through plasma membrane remodeling. In turn, this eventually triggered the mechano-activated clathrin-mediated endocytic pathway and made cells more apt to internalize polyplexes, resulting in transfection efficiencies increased from 10-to-100-fold. Noteworthy, these results were obtained transfecting three cell lines and hard-to-transfect primary cells. CONCLUSIONS: In this work, we focus on a new technology to enhance the intracellular delivery of NAs and improve the transfection efficiency of non-viral vectors through priming adherent cells with a short vibrational stimulation. This study paves the way for capitalizing on physical cell stimulation(s) to significantly raise the effectiveness of gene delivery vectors in vitro and ex vivo.


Subject(s)
COVID-19 , Polymers , COVID-19 Vaccines , Gene Transfer Techniques , Humans , Polyethyleneimine , Transfection
11.
Cells Tissues Organs ; 211(4): 420-446, 2022.
Article in English | MEDLINE | ID: mdl-34433163

ABSTRACT

In this featured review manuscript, the aim is to present a critical survey on the processes available for fabricating bioartificial organs (BAOs). The focus will be on hollow tubular organs for the transport of anabolites and catabolites, i.e., vessels, trachea, esophagus, ureter and urethra, and intestine. First, the anatomic hierarchical structures of tubular organs, as well as their principal physiological functions, will be presented, as this constitutes the mandatory requirements for effectively designing and developing physiologically relevant BAOs. Second, 3D bioprinting, solution electrospinning, and melt electrowriting will be introduced, together with their capacity to match the requirements imposed by designing scaffolds compatible with the anatomical and physiologically relevant environment. Finally, the intrinsic correlation between processes, materials, and cells will be critically discussed, and directives defining the strengths, weaknesses, and opportunities offered by each process will be proposed for assisting bioengineers in the selection of the appropriate process for the target BAO and its specific required functions.


Subject(s)
Bioartificial Organs , Bioprinting , Bioprinting/methods , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry
12.
Front Cell Infect Microbiol ; 11: 678081, 2021.
Article in English | MEDLINE | ID: mdl-34178721

ABSTRACT

Introduction: The use of spinal implants for the treatment of back disorders is largely affected by the insurgence of infections at the implantation site. Antibacterial coatings have been proposed as a viable solution to limit such infections. However, despite being effective at short-term, conventional coatings lack the ability to prevent infections at medium and long-term. Hydrogel-based drug delivery systems may represent a solution controlling the release of the loaded antibacterial agents while improving cell integration. Agarose, in particular, is a biocompatible natural polysaccharide known to improve cell growth and already used in drug delivery system formulations. In this study, an agarose hydrogel-based coating has been developed for the controlled release of gentamicin (GS). Methods: Sand blasted Ti6Al4V discs were grafted with dopamine (DOPA) solution. After, GS loaded agarose hydrogels have been produced and additioned with tannic acid (TA) and calcium chloride (CaCl2) as crosslinkers. The different GS-loaded hydrogel formulations were deposited on Ti6Al4V-DOPA surfaces, and allowed to react under UV irradiation. Surface topography, wettability and composition have been analyzed with profilometry, static contact angle measurement, XPS and FTIR spectroscopy analyses. GS release was performed under pseudo-physiological conditions up to 28 days and the released GS was quantified using a specific ELISA test. The cytotoxicity of the produced coatings against human cells have been tested, along with their antibacterial activity against S. aureus bacteria. Results: A homogeneous coating was obtained with all the hydrogel formulations. Moreover, the coatings presented a hydrophilic behavior and micro-scale surface roughness. The addition of TA in the hydrogel formulations showed an increase in the release time compared to the normal GS-agarose hydrogels. Moreover, the GS released from these gels was able to significantly inhibit S. aureus growth compared to the GS-agarose hydrogels. The addition of CaCl2 to the gel formulation was able to significantly decrease cytotoxicity of the TA-modified hydrogels. Conclusions: Due to their surface properties, low cytotoxicity and high antibacterial effects, the hereby proposed gentamicin-loaded agarose-hydrogels provide new insight, and represent a promising approach for the surface modification of spinal implants, greatly impacting their application in the orthopedic surgical scenario.


Subject(s)
Gentamicins , Titanium , Anti-Bacterial Agents/pharmacology , Coated Materials, Biocompatible , Delayed-Action Preparations , Dopamine , Gentamicins/pharmacology , Humans , Hydrogels , Sepharose , Staphylococcus aureus
13.
Nanoscale ; 13(17): 8333-8342, 2021 May 07.
Article in English | MEDLINE | ID: mdl-33900339

ABSTRACT

Non-viral gene delivery vectors have increasingly come under the spotlight, but their performaces are still far from being satisfactory. Therefore, there is an urgent need for forecasting tools and screening methods to enable the development of ever more effective transfectants. Here, coarse-grained (CG) models of gold standard transfectant poly(ethylene imine)s (PEIs) have been profitably used to investigate and highlight the effect of experimentally-relevant parameters, namely molecular weight (2 vs. 10 kDa) and topologies (linear vs. branched), protonation state, and ammine-to-phosphate ratios (N/Ps), on the complexation and the gene silencing efficiency of siRNA molecules. The results from the in vitro screening of cationic polymers and conditions were used to validate the in silico platform that we developed, such that the hits which came out of the CG models were of high practical relevance. We show that our in silico platform enables to foresee the most suitable conditions for the complexation of relevant siRNA-polycation assemblies, thereby providing a reliable predictive tool to test bench transfectants in silico, and foster the design and development of gene delivery vectors.


Subject(s)
Gene Transfer Techniques , Polymers , Computer Simulation , Genetic Therapy , Genetic Vectors , RNA, Small Interfering/genetics , Transfection
14.
Materials (Basel) ; 14(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33669103

ABSTRACT

Current COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has put a spotlight on the spread of infectious diseases brought on by pathogenic airborne bacteria and viruses. In parallel with a relentless search for therapeutics and vaccines, considerable effort is being expended to develop ever more powerful technologies to restricting the spread of airborne microorganisms in indoor spaces through the minimization of health- and environment-related risks. In this context, UV-based and photocatalytic oxidation (PCO)-based technologies (i.e., the combined action of ultraviolet (UV) light and photocatalytic materials such as titanium dioxide (TiO2)) represent the most widely utilized approaches at present because they are cost-effective and ecofriendly. The virucidal and bactericidal effect relies on the synergy between the inherent ability of UV light to directly inactivate viral particles and bacteria through nucleic acid and protein damages, and the production of oxidative radicals generated through the irradiation of the TiO2 surface. In this literature survey, we draw attention to the most effective UV radiations and TiO2-based PCO technologies available and their underlying mechanisms of action on both bacteria and viral particles. Since the fine tuning of different parameters, namely the UV wavelength, the photocatalyst composition, and the UV dose (viz, the product of UV light intensity and the irradiation time), is required for the inactivation of microorganisms, we wrap up this review coming up with the most effective combination of them. Now more than ever, UV- and TiO2-based disinfection technologies may represent a valuable tool to mitigate the spread of airborne pathogens.

15.
Biofabrication ; 13(3)2021 04 26.
Article in English | MEDLINE | ID: mdl-33735854

ABSTRACT

Bone metastases occur in 65%-80% advanced breast cancer patients. Although significant progresses have been made in understanding the biological mechanisms driving the bone metastatic cascade, traditional 2Din vitromodels and animal studies are not effectively reproducing breast cancer cells (CCs) interactions with the bone microenvironment and suffer from species-specific differences, respectively. Moreover, simplifiedin vitromodels cannot realistically estimate drug anti-tumoral properties and side effects, hence leading to pre-clinical testing frequent failures. To solve this issue, a 3D metastatic bone minitissue (MBm) is designed with embedded human osteoblasts, osteoclasts, bone-resident macrophages, endothelial cells and breast CCs. This minitissue recapitulates key features of the bone metastatic niche, including the alteration of macrophage polarization and microvascular architecture, along with the induction of CC micrometastases and osteomimicry. The minitissue reflects breast CC organ-specific metastatization to bone compared to a muscle minitissue. Finally, two FDA approved drugs, doxorubicin and rapamycin, have been tested showing that the dose required to impair CC growth is significantly higher in the MBm compared to a simpler CC monoculture minitissue. The MBm allows the investigation of metastasis key biological features and represents a reliable tool to better predict drug effects on the metastatic bone microenvironment.


Subject(s)
Bone Neoplasms , Endothelial Cells , Tissue Engineering , Tumor Microenvironment , Animals , Bone and Bones , Cell Line, Tumor , Humans
16.
Bioconjug Chem ; 32(4): 690-701, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33470802

ABSTRACT

Cationic lipids (CLs) have gained significant attention among nonviral gene delivery vectors due to their ease of synthesis and functionalization with multivalent moieties. In particular, there is an increasing request for multifunctional CLs having gene delivery capacity and antibacterial activity. Herein, we describe the design and synthesis of a novel class of aminoglycoside (AG)-based multifunctional vectors with high transfection efficiency and noticeable antibacterial properties. Specifically, cationic amphiphiles were built on a triazine scaffold, allowing for an easy derivatization with up to three potentially different substituents, such as neomycin (Neo) that serves as the polar head and one or two lipophilic tails, namely stearyl (ST) and oleyl (OL) alkyl chains and cholesteryl (Chol) tail. With the aim to shed more light on the effect of different types and numbers of lipophilic moieties on the ability of CLs to condense and transfect cells, the performance of Neo-triazine-based derivatives as gene delivery vectors was evaluated and compared. The ability of Neo-triazine-based derivatives to act as antimicrobial agents was evaluated as well. Neo-triazine-based CLs invariably exhibited excellent DNA condensation ability, even at a low charge ratio (CR, +/-). Besides, each derivative showed very good transfection performance at its optimal CR on two different cell lines, along with negligible cytotoxicity. CLs bearing symmetric two-tailed OL proved to be the most effective in transfection. Interestingly, Neo-triazine-based derivatives, used as either free lipids or lipoplexes, exhibited strong antibacterial activity against Gram-negative bacteria, especially in the case of CLs bearing one or two aliphatic chains. Altogether, these results highlight the potential of Neo-triazine-based derivatives as effective multifunctional nonviral gene delivery vectors.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gene Transfer Techniques , Lipids/chemistry , Neomycin/chemistry , Triazines/chemistry , Anti-Bacterial Agents/chemistry , Cations
17.
Chem Phys Lipids ; 235: 105032, 2021 03.
Article in English | MEDLINE | ID: mdl-33359210

ABSTRACT

Lipid-based carriers represent the most widely used alternative to viral vectors for gene expression and gene silencing purposes. This class of non-viral vectors is particularly attractive for their ease of synthesis and chemical modifications to endow them with desirable properties. Despite combinatorial approaches have led to the generation of a large number of cationic lipids displaying different supramolecular structures and improved behavior, additional effort is needed towards the development of more and more effective cationic lipids for transfection purposes. With this review, we seek to highlight the great progress made in the design of each and every constituent domain of cationic lipids, that is, the chemical structure of the headgroup, linker and hydrophobic moieties, and on the specific effect on the assembly with nucleic acids. Since the complexity of such systems is known to affect their performances, the role of formulation, stability and phase behavior on the transfection efficiency of such assemblies will be thoroughly discussed. Our objective is to provide a conceptual framework for the development of ever more performing lipid gene delivery vectors.


Subject(s)
Gene Transfer Techniques , Lipids/chemistry , Cations/chemistry , Drug Carriers/chemistry , Humans , Molecular Structure
18.
J Mater Sci Mater Med ; 31(5): 43, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32358696

ABSTRACT

Bioactive glasses (BGs), due to their ability to influence osteogenic cell functions, have become attractive materials to improve loaded and unloaded bone regeneration. BG systems can be easily doped with several metallic ions (e.g., Ag, Sr, Cu, Nb) in order to confer antibacterial properties. In particular, Nb, when compared with other metal ions, has been reported to be less cytotoxic and possess the ability to enhance mineralization process in human osteoblast populations. In this study, we co-deposited, through one-pot electrophoretic deposition (EPD), chitosan (CS), gelatin (GE) and a modified BG containing Nb to obtain substrates with antibacterial activity for unloaded bone regeneration. Self-standing composite scaffolds, with a defined porosity (15-90 µm) and homogeneous dispersion of BGs were obtained. TGA analysis revealed a BG loading of about 10% in the obtained scaffolds. The apatite formation ability of the scaffolds was evaluated in vitro in simulated body fluid (SBF). SEM observations, XRD and FT-IR spectra showed a slow (21-28 days) yet effective nucleation of CaP species on BGs. In particular, FT-IR peak around 603 cm-1 and XRD peak at 2θ = 32°, denoted the formation of a mineral phase after SBF immersion. In vitro biological investigation revealed that the release of Nb from composite scaffolds had no cytotoxic effects. Interestingly, BG-doped Nb scaffolds displayed antibacterial properties, reducing S. lutea and E. coli growth of ≈60% and ≈50%, respectively. Altogether, the obtained results disclose the produced composite scaffolds as promising materials with inherent antibacterial activity for bone tissue engineering applications.


Subject(s)
Bone Regeneration/physiology , Ceramics/chemistry , Chitosan/chemistry , Glass/chemistry , Niobium/chemistry , Biocompatible Materials , Cell Line, Tumor , Electrophoresis , Gelatin , Humans , Hydrogen-Ion Concentration , Materials Testing , Microscopy, Electron, Scanning , Osteosarcoma , Spectroscopy, Fourier Transform Infrared , Tissue Scaffolds
19.
Pharmaceutics ; 12(2)2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32098191

ABSTRACT

Transfection by means of non-viral gene delivery vectors is the cornerstone of modern gene delivery. Despite the resources poured into the development of ever more effective transfectants, improvement is still slow and limited. Of note, the performance of any gene delivery vector in vitro is strictly dependent on several experimental conditions specific to each laboratory. The lack of standard tests has thus largely contributed to the flood of inconsistent data underpinning the reproducibility crisis. A way researchers seek to address this issue is by gauging the effectiveness of newly synthesized gene delivery vectors with respect to benchmarks of seemingly well-known behavior. However, the performance of such reference molecules is also affected by the testing conditions. This survey points to non-standardized transfection settings and limited information on variables deemed relevant in this context as the major cause of such misalignments. This review provides a catalog of conditions optimized for the gold standard and internal reference, 25 kDa polyethyleneimine, that can be profitably replicated across studies for the sake of comparison. Overall, we wish to pave the way for the implementation of standardized protocols in order to make the evaluation of the effectiveness of transfectants as unbiased as possible.

20.
Chem Biodivers ; 16(6): e1900097, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30942951

ABSTRACT

New N-substituted-2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridine derivatives were synthesized employing a convenient one-pot three-component method and their structures were characterized by 1 H-NMR and single crystal X-ray diffraction analysis. All the synthesized compounds were in vitro screened for antimicrobial activity against Gram-positive (Sarcina lutea) and Gram-negative bacteria (Escherichia coli). In this work, we introduced a chiral residue on the tetrahydropyridine nitrogen, the hitherto the less investigated position on this pharmacophore in order to explore the effect. The antibacterial results showed that the synthesized compounds were active only against Gram-positive bacteria and the (R)-enantiomers displayed a greater antimicrobial potency than their (S)-counterparts. The structure-activity relationship here investigated may provide some interesting clues for future development of tetrahydrothienopyridine derivatives with higher antimicrobial activity.


Subject(s)
Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Crystallography, X-Ray , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Molecular Conformation , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...