Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 10(1): 277-283, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29210429

ABSTRACT

Lanthanides (Ln) bis-phthalocyanine (Pc), the so-called LnPc2double decker, are a promising class of molecules with a well-defined magnetic anisotropy. In this work, we investigate the magnetic properties of LnPc2 molecules UHV-deposited on a graphene/Ni(111) substrate and how they modify when an Au layer is intercalated between Ni and graphene. X-ray absorption spectroscopy (XAS), and linear and magnetic circular dichroism (XLD and XMCD) were used to characterize the systems and probe the magnetic coupling between LnPc2 molecules and the Ni substrate through graphene, both gold-intercalated and not. Two types of LnPc2 molecules (Ln = Tb, Er) with a different magnetic anisotropy (easy-axis for Tb, easy-plane for Er) were considered. XMCD shows an antiferromagnetic coupling between Ln and Ni(111) even in the presence of the graphene interlayer. Au intercalation causes the vanishing of the interaction between Tb and Ni(111). In contrast, in the case of ErPc2, we found that the gold intercalation does not perturb the magnetic coupling. These results, combined with the magnetic anisotropy of the systems, suggest the possible importance of the magnetic dipolar field contribution for determining the magnetic behaviour.

2.
Dalton Trans ; 45(42): 16570-16574, 2016 Nov 14.
Article in English | MEDLINE | ID: mdl-27535580

ABSTRACT

Several technological issues have to be faced to realize devices working at the single molecule level. One of the main challenges consists of defining methods to fabricate electrodes to make contact with single molecules. Here, we report the realization of novel spintronic devices made of a TbPc2 single molecule embedded between two nanometer-separated graphene electrodes, obtained by feedback-controlled electroburning. We demonstrate that this approach allows the realisation of devices working at low temperature. With these, we were able to characterize the magnetic exchange coupling between the electronic spin of the Tb3+ magnetic core and the current passing through the molecular system in the Coulomb blockade regime, thus showing that the use of graphene is a promising way forward in addressing single molecules.

3.
Sci Rep ; 6: 21740, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26907811

ABSTRACT

Learning the art of exploiting the interplay between different units at the atomic scale is a fundamental step in the realization of functional nano-architectures and interfaces. In this context, understanding and controlling the magnetic coupling between molecular centers and their environment is still a challenging task. Here we present a combined experimental-theoretical work on the prototypical case of the bis(phthalocyaninato)-lanthanide(III) (LnPc2) molecular nanomagnets magnetically coupled to a Ni substrate. By means of X-ray magnetic circular dichroism we show how the coupling strength can be tuned by changing the Ln ion. The microscopic parameters of the system are determined by ab-initio calculations and then used in a spin Hamiltonian approach to interpret the experimental data. By this combined approach we identify the features of the spin communication channel: the spin path is first realized by the mediation of the external (5d) electrons of the Ln ion, keeping the characteristic features of the inner 4 f orbitals unaffected, then through the organic ligand, acting as a bridge to the external world.

4.
Nanotechnology ; 26(5): 055703, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25581391

ABSTRACT

Friction characteristics of graphene deposited on different substrates have been studied by atomic force microscopy (AFM). In particular, we compared mechanically exfoliated graphene transferred over Si/SiO2 with respect to monolayer (ML) graphene grown in our laboratory by low temperature chemical vapor deposition on Ni(111) single crystal. Friction force measurements by AFM have been carried out as function of load under different environment conditions, namely vacuum (10(-5) Torr), nitrogen and air. The typical decrease of friction force with increasing number of layers has been observed on graphene over Si/SiO2 in all environment including vacuum. Continuum mechanical approximation has been used to analyze the friction versus load curves of ML graphene on Ni(111). Analysis shows that Derjaguin-Mueller-Toporov model is in good agreement with our experimental data indicating that overall behavior of the interface graphene-Ni(111) is relatively rigid respect to out of plane deformations. This result is consistent with the structural characteristics of the interface since graphene grows in registry with Ni(111) surface with covalent bonding character. Finally, the shear strength and the work of adhesion of the two systems with respect to AFM tip in vacuum have been compared. The result of this procedure indicates that shear strength and work of adhesion measured on graphene-Si/SiO2 interface are always greater than those on graphene-Ni(111) interface.

5.
Phys Rev Lett ; 106(22): 227205, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21702630

ABSTRACT

We report an in-depth study on how spin information propagates at supramolecular scale through a family of heteroaromatic linkers. By density-functional theory calculations, we rationalize the behavior of a series of Cr7Ni dimers for which we are able to systematically change the aromatic linker thus tuning the strength of the magnetic interaction, as experimentally shown by low temperature micro-SQUID and specific heat measurements. We also predict a cos2 dependence of the magnetic coupling on the twisting angle between the aromatic cycles in bicyclic linkers, a mechanism parallel to charge transport on similar systems [L. Venkataraman et al., Nature (London) 442, 904 (2006)].

6.
Nanotechnology ; 21(27): 274009, 2010 Jul 09.
Article in English | MEDLINE | ID: mdl-20571196

ABSTRACT

Molecular spin clusters are mesoscopic systems whose structural and physical features can be tailored at the synthetic level. Besides, their quantum behavior is directly accessible in the laboratory and their magnetic properties can be rationalized in terms of microscopic spin models. Thus they represent an ideal playground within solid state systems to test concepts in quantum mechanics. One intriguing challenge is to control entanglement between molecular spins. Here we show how this goal can be pursued by discussing specific examples and referring to recent achievements.

7.
Phys Rev Lett ; 104(3): 037203, 2010 Jan 22.
Article in English | MEDLINE | ID: mdl-20366678

ABSTRACT

We characterize supramolecular magnetic structures, consisting of two weakly coupled antiferromagnetic rings, by low-temperature specific heat, susceptibility, magnetization and electron paramagnetic resonance measurements. Intra- and inter-ring interactions are modeled through a microscopic spin-Hamiltonian approach that reproduces all the experimental data quantitatively and legitimates the use of an effective two-qubit picture. Spin entanglement between the rings is experimentally demonstrated through magnetic susceptibility below 50 mK and theoretically quantified by the concurrence.

8.
Phys Rev Lett ; 97(16): 167202, 2006 Oct 20.
Article in English | MEDLINE | ID: mdl-17155429

ABSTRACT

We report on the Fe17 high-spin molecular cluster and show that this system is an exemplification of nanostructured dipolar magnetism. Each Fe17 molecule, with spin S=35/2 and axial anisotropy as small as D approximately -0.02 K, is the magnetic unit that can be chemically arranged in different packing crystals while preserving both the spin ground state and anisotropy. For every configuration, molecular spins are correlated only by dipolar interactions. The ensuing interplay between dipolar energy and anisotropy gives rise to macroscopic behaviors ranging from superparamagnetism to long-range magnetic order at temperatures below 1 K.

9.
Phys Rev Lett ; 97(20): 207201, 2006 Nov 17.
Article in English | MEDLINE | ID: mdl-17155708

ABSTRACT

We investigate a family of molecular crystals containing noninteracting Ni10 magnetic molecules. We find slow relaxation of the magnetization below a temperature as high as 17 K and we show that this behavior is not associated with an anisotropy energy barrier. Ni10 has a characteristic magnetic energy spectrum structured in dense bands, the lowest of which makes the crystal opaque to phonons of energy below about 1 meV. We ascribe the nonequilibrium behavior to the resulting resonant trapping of these low-energy phonons. Trapping breaks up spin relaxation paths leading to a novel kind of slow magnetic dynamics which occurs in the lack of anisotropy, magnetic interactions and quenched disorder.

SELECTION OF CITATIONS
SEARCH DETAIL
...