Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(21): 210404, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37295090

ABSTRACT

By using the worldline Monte Carlo technique, matrix product state, and a variational approach à la Feynman, we investigate the equilibrium properties and relaxation features of the dissipative quantum Rabi model, where a two level system is coupled to a linear harmonic oscillator embedded in a viscous fluid. We show that, in the Ohmic regime, a Beretzinski-Kosterlitz-Thouless quantum phase transition occurs by varying the coupling strength between the two level system and the oscillator. This is a nonperturbative result, occurring even for extremely low dissipation magnitude. By using state-of-the-art theoretical methods, we unveil the features of the relaxation towards the thermodynamic equilibrium, pointing out the signatures of quantum phase transition both in the time and frequency domains. We prove that, for low and moderate values of the dissipation, the quantum phase transition occurs in the deep strong coupling regime. We propose to realize this model by coupling a flux qubit and a damped LC oscillator.


Subject(s)
Monte Carlo Method , Phase Transition , Thermodynamics
2.
Phys Rev Lett ; 123(4): 046401, 2019 Jul 26.
Article in English | MEDLINE | ID: mdl-31491257

ABSTRACT

In condensed matter physics many features can be understood in terms of their topological properties. Here we report evidence of a topological quantum transition driven by the charge-phonon coupling in the spinless Haldane model on a honeycomb lattice, a well-known prototypical model of the Chern insulator. Starting from parameters describing the topological phase in the bare Haldane model, we show that increasing the strength of the charge lattice coupling drives the system towards a trivial insulator. The average number of fermions in the Dirac point, characterized by the lowest gap, exhibits a finite discontinuity at the transition point and can be used as a direct indicator of the topological quantum transition. Numerical simulations show, also, that the renormalized phonon propagator exhibits a two peak structure across the quantum transition, whereas, in the absence of the mass term in the bare Haldane model, there is indication of a complete softening of the effective vibrational mode, signaling a charge density wave instability.

SELECTION OF CITATIONS
SEARCH DETAIL
...