Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 19(3): 669-686, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38486495

ABSTRACT

The understanding of protein-protein interaction mechanisms is key to the atomistic description of cell signaling pathways and for the development of new drugs. In this context, the mechanism of intrinsically disordered proteins folding upon binding has attracted attention. The VirB9 C-terminal domain (VirB9Ct) and the VirB7 N-terminal motif (VirB7Nt) associate with VirB10 to form the outer membrane core complex of the Type IV Secretion System injectisome. Despite forming a stable and rigid complex, VirB7Nt behaves as a random coil, while VirB9Ct is intrinsically dynamic in the free state. Here we combined NMR, stopped-flow fluorescence, and computer simulations using structure-based models to characterize the VirB9Ct-VirB7Nt coupled folding and binding mechanism. Qualitative data analysis suggested that VirB9Ct preferentially binds to VirB7Nt by way of a conformational selection mechanism at lower temperatures. However, at higher temperatures, energy barriers between different VirB9Ct conformations are more easily surpassed. Under these conditions the formation of non-native initial encounter complexes may provide alternative pathways toward the native complex conformation. These observations highlight the intimate relationship between folding and binding, calling attention to the fact that the two molecular partners must search for the most favored intramolecular and intermolecular interactions on a rugged and funnelled conformational energy landscape, along which multiple intermediates may lead to the final native state.


Subject(s)
Intrinsically Disordered Proteins , Computer Simulation , Fluorescence , Temperature , Protein Folding , Protein Binding
2.
J Struct Biol ; 213(3): 107773, 2021 09.
Article in English | MEDLINE | ID: mdl-34320379

ABSTRACT

Centralities determined from Residue Interaction Networks (RIN) in proteins have been used to predict aspects of their structure and dynamics. Here, we correlate the Eigenvector Centrality (Ec) with the rate constant for thermal denaturation (kden) of the HisF protein from Thermotoga maritima based on 12 single alanine substitution mutants. The molecular basis for this correlation was further explored by studying a mutant containing a replacement of a high Ec residue, Y182A, which displayed increased kden at 80 °C. The crystallographic structure of this mutant showed few changes, mostly in two flexible loops. The 1H-15N -HSQC showed only subtle changes of cross peak positions for residues located near the mutation site and scattered throughout the structure. However, the comparison of the RIN showed that Y182 is the vertex of a set of high centrality residues that spreads throughout the HisF structure, which is lacking in the mutant. Cross-correlation displacements of Cα calculated from a molecular dynamics simulation at different temperatures showed that the Y182A mutation reduced the correlated movements in the HisF structure above 70 °C. 1H-15N NMR chemical shift covariance using temperature as perturbation were consistent with these results. In conclusion the increase in temperature drives the structure of the mutant HisF-Y182A into a less connected state, richer in non-concerted motions, located predominantly in the C-terminal half of the protein where Y182 is placed. Conversely, wild-type HisF responds to increased temperature as a single unit. Hence the replacement of a high Ec residue alters the distribution of thermal energy through HisF structure.


Subject(s)
Proteins , Thermotoga maritima , Models, Molecular , Protein Conformation , Thermotoga maritima/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...