Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Pathogens ; 12(9)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37764903

ABSTRACT

Vector-borne diseases pose a severe threat to human and animal health. Culex pipiens L. (Diptera: Culicidae) is a widespread mosquito species and serves as a vector for the transmission of infectious diseases such as West Nile disease and Lymphatic Filariasis. Synthetic insecticides have been the prime control method for many years to suppress Cx. pipiens populations. However, recently, the use of insecticides has begun to be questioned due to the detrimental impact on human health and the natural environment. Therefore, many authorities urge the development of eco-friendly control methods that are nontoxic to humans. The bacterial associates [Xenorhabdus and Photorhabdus spp. (Enterobacterales: Morganellaceae)] of entomopathogenic nematodes (EPNs) (Sterinernema spp. and Heterorhabditis spp.) (Rhabditida: Heterorhabditidae and Steinernematidae) are one of the green approaches to combat a variety of insect pests. In the present study, the mosquitocidal activity of the cell-free supernatants and cell suspension (4 × 107 cells mL-1) of four different symbiotic bacteria (Xenorhabdus nematophila, X. bovienii, X. budapestensis, and P. luminescens subsp. kayaii) was assessed against different development stages of Cx. pipiens (The 1st/2nd and 3rd/4th instar larvae and pupa) under laboratory conditions. The bacterial symbionts were able to kill all the development stages with varying levels of mortality. The 1st/2nd instar larvae exhibited the highest susceptibility to the cell-free supernatants and cell suspensions of symbiotic bacteria and the efficacy of the cell-free supernatants and cell suspensions gradually declined with increasing phases of growth. The highest effectiveness was achieved by the X. bovienii KCS-4S strain inducing 95% mortality to the 1st/2nd instar larvae. The results indicate that tested bacterial symbionts have great potential as an eco-friendly alternative to insecticides.

2.
Pathogens ; 12(2)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36839560

ABSTRACT

Wireworms (Coleoptera: Elateridae) are common insect pests that attack a wide range of economically important crops including potatoes. The control of wireworms is of prime importance in potato production due to the potential damage of the larvae to tuber quantity and quality. Chemical insecticides, the main control strategy against wireworms, generally fail to provide satisfactory control due to the lack of available chemicals and the soil-dwelling habits of the larvae. In the last decades, new eco-friendly concepts have emerged in the sustainable control of wireworms, one of which is entomopathogenic nematodes (EPNs). EPNs are soil-inhabitant organisms and represent an ecological approach to controlling a great variety of soil-dwelling insect pests. In this study, the susceptibility of Agriotes sputator Linnaeus and A. rufipalpis Brullé larvae, the most common wireworm species in potato cultivation in Türkiye, to native EPN strains [Steinernema carpocapsae (Sc_BL22), S. feltiae (Sf_BL24 and Sf_KAY4), and Heterorhabditis bacteriophora (Hb_KAY10 and Hb_AF12)] were evaluated at two temperatures (25 and 30 °C) in pot experiments. Heterorhabditis bacteriophora Hb_AF12 was the most effective strain at 30 °C six days post-inoculation and caused 37.5% mortality to A. rufipalpis larvae. Agriotes sputator larvae were more susceptible to tested EPNs at the same exposure time, and 50% mortality was achieved by two EPNs species, Hb_AF12 and Sc_BL22. All EPN species/strains induced mortality over 70% to both wireworm species at both temperatures at 100 IJs/cm2, 18 days post-treatment. The results suggest that tested EPN species/strains have great potential in the control of A. sputator and A. rufipalpis larvae.

3.
Insects ; 13(12)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36554995

ABSTRACT

The codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), is one of the major pests in pome fruit production worldwide. Heavy treatment of the larvae of C. pomonella with insecticides triggered the development of resistance to many groups of insecticides. In addition, the increasing concern about the adverse effects of synthetic insecticides on human health and the environment has led to the development of sustainable and eco-friendly control practices for C. pomonella. The entomopathogenic nematodes (EPNs) (Steinernema and Heterorhabditis spp.) and their endosymbionts (Xenorhabdus and Photorhabdus spp.) represent a newly emerging approach to controlling a wide range of insect pests. In the present study, field surveys were conducted in apple orchards to isolate and identify EPNs and their endosymbionts and evaluate their insecticidal efficacy on the larvae of C. pomonella. EPNs were isolated from 12 of 100 soil samples (12%). Seven samples were identified as Steinernema feltiae (Filipjev, 1934) (Rhabditida: Steinernematidae), whereas five samples were assigned to Heterorhabditis bacteriophora (Poinar, 1976) (Rhabditida: Heterorhabditidae). The pathogenicity of the EPN species/isolates was screened on the last instar larvae of G. mellonella. The two most pathogenic isolates from each EPN species were tested against fifth instar larvae of C. pomonella under controlled conditions. The maximum mortality (100%) was achieved by all EPN species/isolates at a concentration of 100 IJs/larva 96 h after treatment. The endosymbionts of selected H. bacteriophora and S. feltiae species were identified as Photorhabdus luminescens subsp. kayaii and Xenorhabdus bovienii, respectively. The mortality rates ranged between 25 and 62% when the fifth larval instar larvae of C. pomonella were exposed to the treatment of cell-free supernatants of symbiotic bacteria. In essence, the present survey indicated that EPNs and their symbiotic bacteria have good potential for biological control of C. pomonella.

4.
Exp Parasitol ; 242: 108380, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36116520

ABSTRACT

The fall webworm (FWW), Hyphantria cunea Drury (Lepidoptera: Erebidae), is an invasive and polyphagous insect pest of many economically important crops such as hazelnuts, apple, and mulberry. Recently, there have been an increasing number of reports about the damaging activities of FWW from hazelnut growing areas of Turkey indicating that currently existing control methods fail to satisfy the expectations of growers. Entomopathogenic nematodes (EPNs) in the Steinernematidae and Heterorhabditidae (Nematoda: Rhabditida) families and the symbiotic bacteria they carry in their intestine have a great potential for the management of many agriculturally important pests. In this study, the symbiotic bacteria of local EPN species (Heterorhabditis bacteriophora AVB-15, Steinernema feltiae KCS-4S, and Steinernema bicornotum MGZ-4S) recovered from the central Anatolia region was characterized using recA gene region as Photorhabdus luminescens, Xenorhabdus bovienii and Xenorhabdus budapestensis. The contact (25, 50, 100, 200 IJs/Petri) and oral efficacies of the infective juveniles (IJs) (25, 50, 100, 200 IJs/leaf) of these EPN isolates determined on 3rd/4th instar larvae, and cell-free supernatants from the identified symbiotic bacteria were evaluated separately on the 3rd and 4th larval instars of FWW in Petri dish environment under laboratory conditions (25 ± 1 °C, 60% of RH). In the Petri dish bioassays of EPN species, the most pathogenic isolate at the 1st DAT and 4th DAT was S. feltiae which caused 50% mortality at the highest concentration (200 IJs/Petri) and the highest mortality rate (97.5%) were achieved at 4th DAT by H. bacteriophora AVB-15 isolate. Surprisingly, the mortality rates were generally higher at the lowest concentrations and 82.5% mortality were reached 4th DAT by S. bicornotum at the lowest concentration (25 IJs/leaf) in the leaf bioassays. Mortality rates were higher in both Petri dish and filter paper efficacies of cell-free supernatants at the 2nd DAT and the highest mortality (87.5%) was reached in the contact efficacy studies when applied X. bovienii KCS-4S strain. The results suggest that the tested EPN species and CFSs have good potential for biological control of the larvae of FWW and can contribute to the IPM programs of FWW. However, the efficacy of both IJs of EPNs and CFSs of their symbiotic bacteria on larvae of FWW requires further studies to verify their efficiency in the field.


Subject(s)
Insecticides , Moths , Photorhabdus , Rhabditida , Humans , Animals , Larva/microbiology , Pest Control, Biological
5.
Exp Parasitol ; 242: 108394, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36179855

ABSTRACT

The black cutworm (BCW), Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), is one of the destructive cutworm species. Black cutworm is a highly polyphagous pest that feeds on more than 30 plants, many of which are of economic importance such as maize, sugar beet, and potato. The control of BCW larvae relies heavily on the application of synthetic insecticides which have a detrimental impact on human health and the natural environment. In addition, increasing insecticide resistance in many insect species requires a novel and sustainable approach to controlling insect pests. The endosymbionts of entomopathogenic nematodes (EPNs) (Xenorhabdus and Phorohabdus spp.) represent a newly emerging green approach to controlling a wide range of insect pests. In the current study, the oral and contact efficacy of cell suspension (4 × 107 cells ml-1) and cell-free supernatants of different symbiotic bacteria (X. nematophilai, X. bovienii, X. budapestensis, and P. luminescent subsp. kayaii) were evaluated against the mixed groups of 1st-2nd and 3rd-4th instars larvae of BCW under controlled conditions. The oral treatment of the cell suspension and cell-free supernatants resulted in higher mortality rates than contact treatments. In general, larval mortality was higher in the 1st-2nd instar larvae than in the 3rd-4th instar larvae. The highest (75%) mortality was obtained from the cell suspension of X. budapestensis. The results indicated that the oral formulations of the cell suspension and cell-free supernatants of bacterial strains may have a good control potential against the 1st-2nd larvae BCW. However, the efficacy of the cell suspension and cell-free supernatants of tested bacterial strains should be further evaluated under greenhouse and field conditions.


Subject(s)
Insecticides , Moths , Photorhabdus , Xenorhabdus , Animals , Humans , Larva/microbiology , Sugars , Pest Control, Biological/methods
SELECTION OF CITATIONS
SEARCH DETAIL