Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
J Biomed Biotechnol ; 2012: 989572, 2012.
Article in English | MEDLINE | ID: mdl-23251086

ABSTRACT

Depleted supplies of fossil fuel, regular price hikes of gasoline, and environmental damage have necessitated the search for economic and eco-benign alternative of gasoline. Ethanol is produced from food/feed-based substrates (grains, sugars, and molasses), and its application as an energy source does not seem fit for long term due to the increasing fuel, food, feed, and other needs. These concerns have enforced to explore the alternative means of cost competitive and sustainable supply of biofuel. Sugarcane residues, sugarcane bagasse (SB), and straw (SS) could be the ideal feedstock for the second-generation (2G) ethanol production. These raw materials are rich in carbohydrates and renewable and do not compete with food/feed demands. However, the efficient bioconversion of SB/SS (efficient pretreatment technology, depolymerization of cellulose, and fermentation of released sugars) remains challenging to commercialize the cellulosic ethanol. Among the technological challenges, robust pretreatment and development of efficient bioconversion process (implicating suitable ethanol producing strains converting pentose and hexose sugars) have a key role to play. This paper aims to review the compositional profile of SB and SS, pretreatment methods of cane biomass, detoxification methods for the purification of hydrolysates, enzymatic hydrolysis, and the fermentation of released sugars for ethanol production.


Subject(s)
Biomass , Biotechnology/methods , Carbohydrate Metabolism , Enzymes/metabolism , Ethanol/metabolism , Fermentation , Saccharum/metabolism , Saccharum/chemistry
2.
J Ind Microbiol Biotechnol ; 38(9): 1467-75, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21210180

ABSTRACT

Experiments based on a 2(3) central composite full factorial design were carried out in 200-ml stainless-steel containers to study the pretreatment, with dilute sulfuric acid, of a sugarcane bagasse sample obtained from a local sugar-alcohol mill. The independent variables selected for study were temperature, varied from 112.5°C to 157.5°C, residence time, varied from 5.0 to 35.0 min, and sulfuric acid concentration, varied from 0.0% to 3.0% (w/v). Bagasse loading of 15% (w/w) was used in all experiments. Statistical analysis of the experimental results showed that all three independent variables significantly influenced the response variables, namely the bagasse solubilization, efficiency of xylose recovery in the hemicellulosic hydrolysate, efficiency of cellulose enzymatic saccharification, and percentages of cellulose, hemicellulose, and lignin in the pretreated solids. Temperature was the factor that influenced the response variables the most, followed by acid concentration and residence time, in that order. Although harsher pretreatment conditions promoted almost complete removal of the hemicellulosic fraction, the amount of xylose recovered in the hemicellulosic hydrolysate did not exceed 61.8% of the maximum theoretical value. Cellulose enzymatic saccharification was favored by more efficient removal of hemicellulose during the pretreatment. However, detoxification of the hemicellulosic hydrolysate was necessary for better bioconversion of the sugars to ethanol.


Subject(s)
Cellulose/chemistry , Sulfuric Acids/pharmacology , Cellulose/analysis , Cellulose/metabolism , Hydrolysis , Lignin/analysis , Polysaccharides/analysis , Saccharum/chemistry , Temperature , Xylose/analysis
3.
Appl Biochem Biotechnol ; 161(1-8): 84-92, 2010 May.
Article in English | MEDLINE | ID: mdl-19802721

ABSTRACT

The objective of this study was to evaluate the ethanol production from the sugars contained in the sugarcane bagasse hemicellulosic hydrolysate with the yeast Pichia stipitis DSM 3651. The fermentations were carried out in 250-mL Erlenmeyers with 100 mL of medium incubated at 200 rpm and 30 degrees C for 120 h. The medium was composed by raw (non-detoxified) hydrolysate or by hydrolysates detoxified by pH alteration followed by active charcoal adsorption or by adsorption into ion-exchange resins, all of them supplemented with yeast extract (3 g/L), malt extract (3 g/L), and peptone (5 g/L). The initial concentration of cells was 3 g/L. According to the results, the detoxification procedures removed inhibitory compounds from the hemicellulosic hydrolysate and, thus, improved the bioconversion of the sugars into ethanol. The fermentation using the non-detoxified hydrolysate led to 4.9 g/L ethanol in 120 h, with a yield of 0.20 g/g and a productivity of 0.04 g L(-1) h(-1). The detoxification by pH alteration and active charcoal adsorption led to 6.1 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.13 g L(-1) h(-1). The detoxification by adsorption into ion-exchange resins, in turn, provided 7.5 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.16 g L(-1) h(-1).


Subject(s)
Cellulose/chemistry , Ethanol/metabolism , Fermentation , Pichia/metabolism , Saccharum/chemistry , Bioreactors , Carbohydrates/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Industrial Microbiology , Polysaccharides/chemistry , Polysaccharides/metabolism
4.
Braz. j. microbiol ; 39(2): 333-336, Apr.-June 2008. graf, tab
Article in English | LILACS | ID: lil-487714

ABSTRACT

Wheat straw hemicellulosic hydrolysate was used for xylitol bioproduction. The use of a xylose-containing medium to grow the inoculum did not favor the production of xylitol in the hydrolysate, which was submitted to a previous detoxification treatment with 2.5 percent activated charcoal for optimized removal of inhibitory compounds.


Hidrolisado hemicelulósico de palha de trigo foi utilizado para a bioprodução de xilitol. O uso de meio contendo xilose para crescer o inóculo não favoreceu a produção de xilitol no hidrolisado, que foi submetido a um tratamento prévio de destoxificação com 2.5 por cento de carvão ativo para remoção otimizada de compostos inibitórios.


Subject(s)
Candida/growth & development , Candida/isolation & purification , Carbon/analysis , Enzyme Inhibitors , Hydrolases/analysis , In Vitro Techniques , Industrial Microbiology , Xylose/analysis , Culture Media , Fermentation , Methods , Triticum
5.
Bioprocess Biosyst Eng ; 31(5): 493-8, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18175152

ABSTRACT

Candida guilliermondii FTI 20037 cells were entrapped in Ca-alginate beads and used for xylose-to-xylitol bioconversions during five successive batches in a stirred tank reactor. Supplemented sugarcane bagasse hemicellulosic hydrolysate was used as the fermentation medium. The average volume of the Ca-alginate beads was reduced by about 30% after the 600 h taken to perform the five bioconversion cycles, thus demonstrating physical instability under the conditions prevailing in the reactor vessel. In spite of this, almost steady bioconversion rates and yields were observed along the repeated batches. In average values, a production of 51.6 g l(-1), a productivity of 0.43 g l(-1 )h(-1) and a yield of 0.71 g g(-1) were attained in each batch, variation coefficients being smaller than 10%.


Subject(s)
Alginates/metabolism , Bioreactors/microbiology , Candida/metabolism , Cell Culture Techniques/methods , Xylitol/metabolism , Xylose/metabolism , Biotransformation , Candida/cytology , Cells, Immobilized , Glucuronic Acid/metabolism , Hexuronic Acids/metabolism , Rotation
6.
Braz J Microbiol ; 39(2): 333-6, 2008 Apr.
Article in English | MEDLINE | ID: mdl-24031226

ABSTRACT

Wheat straw hemicellulosic hydrolysate was used for xylitol bioproduction. The use of a xylose-containing medium to grow the inoculum did not favor the production of xylitol in the hydrolysate, which was submitted to a previous detoxification treatment with 2.5% activated charcoal for optimized removal of inhibitory compounds.

7.
RBCF, Rev. bras. ciênc. farm. (Impr.) ; 43(1): 47-53, jan.-mar. 2007. graf
Article in English | LILACS | ID: lil-451929

ABSTRACT

Xylose-to-xylitol bioconversion by Ca-alginate entrapped Candida guilliermondii cells in sugarcane bagasse hemicellulosic hydrolysate was carried out in erlenmeyer flasks using the repeated-batch mode of fermentation. The hydrolysate was supplemented or not with ammonium sulfate and/or rice bran extract at the beginning of each repeated batch. Altogether, six sets of three repeated-batches were carried out, the immobilized cells being reused at the end of each batch. The best results were achieved when the hydrolysate was supplemented with both nutrients in all the three repeated batches, which provided xylitol productions of 25.9, 46.8, 48.7 gL-1, productivities of 0.27, 0.49, 0.51 gL-1h-1, and yields of 0.45, 0.58, 0.55 gg-1, respectively. In the absence of nutrients, the xylitol production, productivity and yield did not exceed 12.1 gL-1, 0.13 gL-1h-1 and 0.30 gg-1, respectively.


A bioconversão de xilose em xilitol por células de Candida guilliermondii imobilizadas em alginato de cálcio, em hidrolisado hemicelulósico de bagaço de cana-de-açúcar, foi realizada em frascos erlenmeyer no modo bateladas repetidas de fermentação. O hidrolisado foi suplementado ou não com sulfato de amônio e/ou extrato de farelo de arroz no início de cada batelada repetida. No total, seis experimentos com três bateladas repetidas cada um foram realizados, sendo as células imobilizadas reutilizadas ao final de cada batelada. Os melhores resultados foram alcançados quando o hidrolisado foi suplementado com ambos nutrientes em todas as três bateladas repetidas, resultando em concentrações de xilitol iguais a 25,9, 46,8 e 48,7 gL-1, produtividades de 0,27, 0,49 e 0,51 gL-1h-1, e rendimentos de 0,45, 0,58 e 0,55 gg-1, respectivamente. Na ausência de nutrientes, a concentração de xilitol, a produtividade e o rendimento não ultrapassaram 12,1 gL-1, 0,13 gL-1h-1 e 0.30 gg-1, respectivamente.


Subject(s)
Fermentation , Saccharum , Xylitol , Biodegradation, Environmental , Biotechnology , Industrial Microbiology
8.
Biotechnol Lett ; 25(21): 1811-4, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14677703

ABSTRACT

Batch production of xylitol from the hydrolysate of wheat straw hemicellulose using Candida guilliermondii was carried out in a stirred tank reactor (agitation speed of 300 rpm, aeration rate of 0.6 vvm and initial cell concentration of 0.5 g l(-1)). After 54 h, xylitol production from 30.5 g xylose l(-1) reached 27.5 g l(-1), resulting in a xylose-to-xylitol bioconversion yield of 0.9 g g(-1) and a productivity of 0.5 g l(-1) h(-1).


Subject(s)
Bioreactors/microbiology , Candida/growth & development , Candida/metabolism , Polysaccharides/metabolism , Triticum/chemistry , Triticum/microbiology , Xylitol/biosynthesis , Xylose/metabolism , Hydrolysis , Plant Stems/chemistry , Plant Stems/microbiology , Polysaccharides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL