Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cryst Growth Des ; 22(8): 4996-5003, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35942119

ABSTRACT

Despite the promising properties, the problem of cubic silicon carbide (3C-SiC) heteroepitaxy on silicon has not yet been resolved and its use in microelectronics is limited by the presence of extensive defects. In this paper, we used microphotoluminescence (µ-PL), molten KOH etching, and high-resolution scanning transmission electron microscopy (HRSTEM) to investigate the effect of nitrogen doping on the distribution of stacking faults (SFs) and assess how increasing dosages of nitrogen during chemical vapor deposition (CVD) growth inhibits the development of SFs. An innovative angle-resolved SEM observation approach of molten KOH-etched samples resulted in detailed statistics on the density of the different types of defects as a function of the growth thickness of 3C-SiC free-standing samples with varied levels of nitrogen doping. Moreover, we proceeded to shed light on defects revealed by a diamond-shaped pit. In the past, they were conventionally associated with dislocations (Ds) due to what happens in 4H-SiC, where the formation of pits is always linked with the presence of Ds. In this work, the supposed Ds were observed at high magnification (by HRSTEM), demonstrating that principally they are partial dislocations (PDs) that delimit an SF, whose development and propagation are suppressed by the presence of nitrogen. These results were compared with VESTA simulations, which allowed to simulate the 3C-SiC lattice to design two 3C-lattice domains delimited by different types of SFs. In addition, through previous experimental evidence, a preferential impact of nitrogen on the closure of 6H-like SFs was observed as compared to 4H-like SFs.

2.
Materials (Basel) ; 14(16)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34442923

ABSTRACT

This work provides a comprehensive investigation of nitrogen and aluminum doping and its consequences for the physical properties of 3C-SiC. Free-standing 3C-SiC heteroepitaxial layers, intentionally doped with nitrogen or aluminum, were grown on Si (100) substrate with different 4° off-axis in a horizontal hot-wall chemical vapor deposition (CVD) reactor. The Si substrate was melted inside the CVD chamber, followed by the growth process. Micro-Raman, photoluminescence (PL) and stacking fault evaluation through molten KOH etching were performed on different doped samples. Then, the role of the doping and of the cut angle on the quality, density and length distribution of the stacking faults was studied, in order to estimate the influence of N and Al incorporation on the morphological and optical properties of the material. In particular, for both types of doping, it was observed that as the dopant concentration increased, the average length of the stacking faults (SFs) increased and their density decreased.

SELECTION OF CITATIONS
SEARCH DETAIL
...