Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Ultrasound Med Biol ; 43(11): 2733-2740, 2017 11.
Article in English | MEDLINE | ID: mdl-28843619

ABSTRACT

A device for the training and quantitative assessment of the competency of trainee radiologists in the technically challenging area of breast sonography was developed and evaluated. Currently, suitable commercially available devices are lacking, and there is a growing realization that the reliance on direct exposure to patients for learning may not represent best practice from either the trainees' or patients' perspective. Three devices (PI, PII and PIII) were designed to produce very realistic sonographic images of breast morphology with a range of embedded pathologies. The pilot evaluation used a case study research design to evaluate the role of the anthropomorphic breast sonography training device in training and assessment in a clinical environment. Through the case study, it was possible to evaluate the process and relationships when using this type of training intervention for a small group of radiology resident trainees. The investigation involved a baseline assessment of trainees' (n = 4) ability to detect and characterize all lesions in PI, followed by a 4-wk training period on PII and a post-training assessment using PIII. The evaluation revealed an improvement of 30% ± 8% in the trainee's performance from pre- to post-training. It was expected that the performance of the trainees would improve as the training phantom described in this study aligns with the learning theory of constructivism and fits the ideal specifications of a medical training device in terms of its realism and facilitation of self-directed learning and deliberate practice of the trainees. The device provides a useful platform upon which training and assessment can be facilitated.


Subject(s)
Breast Neoplasms/diagnostic imaging , Clinical Competence/statistics & numerical data , Phantoms, Imaging , Radiology/education , Ultrasonography, Mammary/methods , Breast/diagnostic imaging , Pilot Projects
2.
Ultrasound Med Biol ; 37(1): 122-35, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21084158

ABSTRACT

The development and acoustical characterisation of a range of novel agar-based tissue mimicking material (TMMs) for use in clinically relevant, quality assurance (QA) and anthropomorphic breast phantoms are presented. The novel agar-based TMMs described in this study are based on a comprehensive, systematic variation of the ingredients in the International Electrotechnical Commission (IEC) TMM. A novel, solid fat-mimicking material was also developed and acoustically characterised. Acoustical characterisation was carried out using an in-house scanning acoustic macroscope at low (7.5 MHz) and high frequencies (20 MHz), using the pulse-echo insertion technique. The speeds of sound range from 1490 to 1570 m. s(-1), attenuation coefficients range from 0.1 to 0.9 dB. cm(­1). MHz(-1) and relative backscatter ranges from 0 to -20 dB. It was determined that tissues can be mimicked in terms of independently controllable speeds of sound and attenuation coefficients. These properties make these novel TMMs suitable for use in clinically relevant QA and anthropomorphic phantoms and would potentially be useful for other high frequency applications such as intravascular and small animal imaging.


Subject(s)
Phantoms, Imaging , Ultrasonography, Mammary , Acoustics , Agar/chemistry , Aluminum Oxide/chemistry , Benzalkonium Compounds/chemistry , Carbon Compounds, Inorganic/chemistry , Glycerol/chemistry , Humans , Silicon Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL