Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Rev Immunol ; 41: 405-429, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36750316

ABSTRACT

Maintaining the correct number of healthy red blood cells (RBCs) is critical for proper oxygenation of tissues throughout the body. Therefore, RBC homeostasis is a tightly controlled balance between RBC production and RBC clearance, through the processes of erythropoiesis and macrophage hemophagocytosis, respectively. However, during the inflammation associated with infectious, autoimmune, or inflammatory diseases this homeostatic process is often dysregulated, leading to acute or chronic anemia. In each disease setting, multiple mechanisms typically contribute to the development of inflammatory anemia, impinging on both sides of the RBC production and RBC clearance equation. These mechanisms include both direct and indirect effects of inflammatory cytokines and innate sensing. Here, we focus on common innate and adaptive immune mechanisms that contribute to inflammatory anemias using examples from several diseases, including hemophagocytic lymphohistiocytosis/macrophage activation syndrome, severe malarial anemia during Plasmodium infection, and systemic lupus erythematosus, among others.


Subject(s)
Anemia , Malaria , Humans , Animals , Anemia/complications , Erythropoiesis/physiology , Erythrocytes , Malaria/complications , Macrophages
2.
JAMA Netw Open ; 5(11): e2241622, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36367723

ABSTRACT

Importance: Minimal data are available regarding the postdischarge treatment of multisystem inflammatory syndrome in children (MIS-C). Objectives: To evaluate clinical characteristics associated with duration of postdischarge glucocorticoid use and assess postdischarge clinical course, laboratory test result trajectories, and adverse events in a multicenter cohort with MIS-C. Design, Setting, and Participants: This retrospective cohort study included patients with MIS-C hospitalized with severe illness and followed up for 3 months in an ambulatory setting. Patients younger than 21 years who were admitted between May 15, 2020, and May 31, 2021, at 13 US hospitals were included. Inclusion criteria were inpatient treatment comprising intravenous immunoglobulin, diagnosis of cardiovascular dysfunction (vasopressor requirement or left ventricular ejection fraction ≤55%), and availability of complete outpatient data for 3 months. Exposures: Glucocorticoid treatment. Main Outcomes and Measures: Main outcomes were patient characteristics associated with postdischarge glucocorticoid treatment, laboratory test result trajectories, and adverse events. Multivariable regression was used to evaluate factors associated with postdischarge weight gain (≥2 kg in 3 months) and hyperglycemia during illness. Results: Among 186 patients, the median age was 10.4 years (IQR, 6.7-14.2 years); most were male (107 [57.5%]), Black non-Hispanic (60 [32.3%]), and Hispanic or Latino (59 [31.7%]). Most children were critically ill (intensive care unit admission, 163 [87.6%]; vasopressor receipt, 134 [72.0%]) and received inpatient glucocorticoid treatment (178 [95.7%]). Most were discharged with continued glucocorticoid treatment (173 [93.0%]); median discharge dose was 42 mg/d (IQR, 30-60 mg/d) or 1.1 mg/kg/d (IQR, 0.7-1.7 mg/kg/d). Inpatient severity of illness was not associated with duration of postdischarge glucocorticoid treatment. Outpatient treatment duration varied (median, 23 days; IQR, 15-32 days). Time to normalization of C-reactive protein and ferritin levels was similar for glucocorticoid duration of less than 3 weeks vs 3 or more weeks. Readmission occurred in 7 patients (3.8%); none was for cardiovascular dysfunction. Hyperglycemia developed in 14 patients (8.1%). Seventy-five patients (43%) gained 2 kg or more after discharge (median 4.1 kg; IQR, 3.0-6.0 kg). Inpatient high-dose intravenous and oral glucocorticoid therapy was associated with postdischarge weight gain (adjusted odds ratio, 6.91; 95% CI, 1.92-24.91). Conclusions and Relevance: In this multicenter cohort of patients with MIS-C and cardiovascular dysfunction, postdischarge glucocorticoid treatment was often prolonged, but clinical outcomes were similar in patients prescribed shorter courses. Outpatient weight gain was common. Readmission was infrequent, with none for cardiovascular dysfunction. These findings suggest that strategies are needed to optimize postdischarge glucocorticoid courses for patients with MIS-C.


Subject(s)
Hyperglycemia , Pneumonia, Viral , Child , Humans , Male , Female , Pneumonia, Viral/epidemiology , Pandemics , Patient Discharge , Glucocorticoids/therapeutic use , Retrospective Studies , Stroke Volume , Aftercare , Ventricular Function, Left , Weight Gain
3.
Curr Opin Immunol ; 73: 16-24, 2021 12.
Article in English | MEDLINE | ID: mdl-34411882

ABSTRACT

Monocytes are innate immune cells that develop in the bone marrow and are continually released into circulation, where they are poised to enter tissues in response to homeostatic or inflammatory cues. Monocytes are highly plastic cells that can differentiate in tissues into a variety of monocyte-derived cells to replace resident tissue macrophages, promote inflammatory responses, or resolution of inflammation. As such, monocytes can support tissue homeostasis as well as productive and pathogenic immune responses. Recent work shows previously unappreciated heterogeneity in monocyte development and differentiation in the steady state and during infectious, autoimmune, and inflammatory diseases. Monocyte-derived cells can differentiate via signals from cytokines, pattern recognition receptors or other factors, which can influence development in the bone marrow or in tissues. An improved understanding of these monocyte-derived cells and the signals that drive their differentiation in distinct inflammatory settings could allow for targeting these pathways in pathological inflammation.


Subject(s)
Autoimmune Diseases/immunology , Infections/immunology , Inflammation/immunology , Monocytes/metabolism , Animals , Cell Differentiation , Cytokines/metabolism , Humans , Monocytes/immunology , Receptors, Pattern Recognition/metabolism , Signal Transduction
4.
Rheum Dis Clin North Am ; 47(3): 395-413, 2021 08.
Article in English | MEDLINE | ID: mdl-34215370

ABSTRACT

B cells exert a prominent contribution to the pathogenesis of systemic lupus erythematosus (SLE). Here, we review the immune mechanisms underlying autoreactive B cell activation in SLE, focusing on how B cell receptor and Toll-like receptor signals integrate to drive breaks in tolerance to nuclear antigens. In addition, we discuss autoantibody-dependent and autoantibody-independent B cell effector functions during lupus pathogenesis. Finally, we address efforts to target B cells therapeutically in human SLE. Despite initial disappointing clinical trials testing B cell depletion in lupus, more recent studies show promise, emphasizing how greater understanding of underlying immune mechanisms can yield clinical benefits.


Subject(s)
Lupus Erythematosus, Systemic , Autoantibodies , B-Lymphocytes , Humans , Lupus Erythematosus, Systemic/drug therapy
5.
mBio ; 5(2): e01033-13, 2014 Mar 11.
Article in English | MEDLINE | ID: mdl-24618256

ABSTRACT

Pervasive transcription is observed in a wide range of organisms, including humans, mice, and viruses, but the functional significance of the resulting transcripts remains uncertain. Current genetic approaches are often limited by their emphasis on protein-coding open reading frames (ORFs). We previously identified extensive pervasive transcription from the murine gammaherpesvirus 68 (MHV68) genome outside known ORFs and antisense to known genes (termed expressed genomic regions [EGRs]). Similar antisense transcripts have been identified in many other herpesviruses, including Kaposi's sarcoma-associated herpesvirus and human and murine cytomegalovirus. Despite their prevalence, whether these RNAs have any functional importance in the viral life cycle is unknown, and one interpretation is that these are merely "noise" generated by functionally unimportant transcriptional events. To determine whether pervasive transcription of a herpesvirus genome generates RNA molecules that are functionally important, we used a strand-specific functional approach to target transcripts from thirteen EGRs in MHV68. We found that targeting transcripts from six EGRs reduced viral protein expression, proving that pervasive transcription can generate functionally important RNAs. We characterized transcripts emanating from EGRs 26 and 27 in detail using several methods, including RNA sequencing, and identified several novel polyadenylated transcripts that were enriched in the nuclei of infected cells. These data provide the first evidence of the functional importance of regions of pervasive transcription emanating from MHV68 EGRs. Therefore, studies utilizing mutation of a herpesvirus genome must account for possible effects on RNAs generated by pervasive transcription. IMPORTANCE The fact that pervasive transcription produces functionally important RNAs has profound implications for design and interpretation of genetic studies in herpesviruses, since such studies often involve mutating both strands of the genome. This is a common potential problem; for example, a conservative estimate is that there are an additional 73,000 nucleotides transcribed antisense to annotated ORFs from the 119,450-bp MHV68 genome. Recognizing the importance of considering the function of each strand of the viral genome independently, we used strand-specific approaches to identify six regions of the genome encoding transcripts that promoted viral protein expression. For two of these regions, we mapped novel transcripts and determined that targeting transcripts from these regions reduced viral replication and the expression of other viral genes. This is the first description of a function for these RNAs and suggests that novel transcripts emanating from regions of pervasive transcription are critical for the viral life cycle.


Subject(s)
RNA, Viral/biosynthesis , Rhadinovirus/physiology , Transcription, Genetic , Animals , Mice , Rhadinovirus/genetics
6.
J Virol ; 88(1): 730-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24155394

ABSTRACT

Previous studies identified a role for latent herpesvirus infection in cross-protection against infection and exacerbation of chronic inflammatory diseases. Here, we identified more than 500 genes differentially expressed in spleens, livers, or brains of mice latently infected with gammaherpesvirus 68 and found that distinct sets of genes linked to different pathways were altered in the spleen compared to those in the liver. Several of the most differentially expressed latency-specific genes (e.g., the gamma interferon [IFN-γ], Cxcl9, and Ccl5 genes) are associated with known latency-specific phenotypes. Chronic herpesvirus infection, therefore, significantly alters the transcriptional status of host organs. We speculate that such changes may influence host physiology, the status of the immune system, and disease susceptibility.


Subject(s)
Gammaherpesvirinae/physiology , Herpesviridae Infections/genetics , Transcription, Genetic , Virus Latency , Animals , Base Sequence , DNA Primers , Humans
7.
J Bacteriol ; 187(22): 7655-66, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16267290

ABSTRACT

The SOS response in bacteria includes a global transcriptional response to DNA damage. DNA damage is sensed by the highly conserved recombination protein RecA, which facilitates inactivation of the transcriptional repressor LexA. Inactivation of LexA causes induction (derepression) of genes of the LexA regulon, many of which are involved in DNA repair and survival after DNA damage. To identify potential RecA-LexA-regulated genes in Bacillus subtilis, we searched the genome for putative LexA binding sites within 300 bp upstream of the start codons of all annotated open reading frames. We found 62 genes that could be regulated by putative LexA binding sites. Using mobility shift assays, we found that LexA binds specifically to DNA in the regulatory regions of 54 of these genes, which are organized in 34 putative operons. Using DNA microarray analyses, we found that 33 of the genes with LexA binding sites exhibit RecA-dependent induction by both mitomycin C and UV radiation. Among these 33 SOS genes, there are 22 distinct LexA binding sites preceding 18 putative operons. Alignment of the distinct LexA binding sites reveals an expanded consensus sequence for the B. subtilis operator: 5'-CGAACATATGTTCG-3'. Although the number of genes controlled by RecA and LexA in B. subtilis is similar to that of Escherichia coli, only eight B. subtilis RecA-dependent SOS genes have homologous counterparts in E. coli.


Subject(s)
Bacillus subtilis/genetics , SOS Response, Genetics/genetics , 5' Flanking Region , Bacillus subtilis/physiology , Bacterial Proteins/metabolism , Binding Sites/genetics , Computational Biology , Consensus Sequence , DNA Damage , DNA, Bacterial/metabolism , Electrophoretic Mobility Shift Assay , Escherichia coli/genetics , Mitomycin/toxicity , Oligonucleotide Array Sequence Analysis , Open Reading Frames , Operator Regions, Genetic , Operon , Protein Binding , SOS Response, Genetics/physiology , Sequence Homology, Amino Acid , Serine Endopeptidases/metabolism , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...