ABSTRACT
The urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) reduces NH3 losses from urea (UR) surface-applied to soils, but its efficacy may be lower in acidic soils. The period when urease inhibition occurs efficaciously may change with soil pH. This needs to be clarified in tropical soils which are commonly acidic. This study evaluated the effectiveness of NBPT-treated urea to delay and reduce ammonia volatilization in two soils at three pH levels. Two experiments were conducted under laboratory conditions in soils with different textures (sandy-clay and clay). The treatments consisted of three soil pH levels and two N sources (UR and UR + NBPT), with five replicates. The soil pH values were adjusted and reached values of 4.5, 5.6, and 6.4 in the sandy-clay, and 4.5, 5.4, and 6.1 in the clay soil. Ammonia volatilization was measured using glass chambers (1.5 L). In the sandy-clay soil, NH3 losses were 40-47 % of the UR-N. In the clay soil, losses were 26-32 %. The addition of NBPT to UR reduced the NH3 volatilization by 18-53 %; the inhibitor decreased the N losses under all soil pH conditions but was significantly less efficient in acidic soils (pH 4.5). The lower efficiency of the inhibitor under acidic conditions was more evident in the first few days: 50 % of the total NH3 losses occurred in less than four days in soils with pH 4.5, but in 8-11 days in soils with pH above 5.4. The rapid loss in efficiency in more acidic soils is a drawback. Using NBPT in severely acidic soils showed a relatively small advantage over untreated UR as the inhibitor did not provide extra time for fertilizer incorporation and further reduction of NH3 losses.(AU)
Subject(s)
Volatilization , Soil Acidity , Ammonia/analysis , Urea/chemistry , Urease/chemical synthesisABSTRACT
Liming contributes to the alleviation of acidity in highly weathered soils. For sugarcane, the use of green harvest methods and new soil tillage systems requires an adjustment of lime application rates. In the present study, the effects of different lime rates and tillage systems on sugarcane performance and soil chemical fertility parameters were assessed. Three experiments were conducted in two locations between April 2015 and October 2019. The study design was a randomized block field study with four replicates. Four lime rates were applied once at sugarcane establishments in each soil tillage system and location: no liming (control); lime recommended rate (LRR); two times LRR (2× LRR); and three times LRR (3× LRR). The three soil tillage systems were conventional (CT), deep-strip (DT), and modified deep-strip tillage (MDT). Soil chemical fertility, leaf nutrient concentrations, and sugarcane yield components were analyzed, and correlations were identified by principal component analysis (PCA). The soil acidity was adequately alleviated in all tillage systems. Increasing the lime rate improved the lime distribution and soil fertility parameters. Applying lime at rates higher than LRR improved stalk and sugar yields, longevity, agronomic efficiency index (AEI), and correlated with a longer residual effect of liming, mainly in the last ratoon.
ABSTRACT
Foliar fertilization has been used as a supplemental strategy to plant nutrition especially in crops with high yield potential. Applying nutrients in small doses stimulates photosynthesis and increases yield performance. The aim of this study was to evaluate the efficiency of foliar application of molybdenum (Mo) to soybean and maize. The treatments consisted of the presence (+Mo) and absence (-Mo) of supplementation. Plant nutritional status, nitrate reductase (NR) activity, gas exchange parameters, photosynthetic enzyme activity (Rubisco in soybean and maize and PEPcase in maize), total soluble sugar concentration, leaf protein content, shoot dry matter, shoot nitrogen accumulated, number of grains per plant, mass of 100 grains, and grain yield were evaluated. For soybean and maize, application of Mo increased leaf NR activity, nitrogen and protein content, Rubisco activity, net photosynthesis, and grain yield. These results indicate that foliar fertilization with Mo can efficiently enhance nitrogen metabolism and the plant's response to carbon fixation, resulting in improved crop yields.
ABSTRACT
The productive potential of new peanut cultivars has increased over the years in relation to old cultivars, especially when compared with ones with upright growth habit. Thus, the requirement for macronutrients for these new cultivars may also have increased, making the existing fertilizer recommendation tables obsolete, thus increasing the need for further studies measuring the real macronutrient requirements of these new peanut cultivars. Our study aimed to evaluate the growth patterns and the macronutrient absorption rate throughout the biological cycle of three modern runner peanut cultivars, as well as the potential for producing dry matter, pods, and kernels, and their respective macronutrient accumulations. The experimental design was a randomized complete block with split-plots and nine replications. The experimental plots consisted of three peanut cultivars (IAC Runner 886, IAC 505, and IAC OL3), and subplots consisted of nine plant samplings (14, 28, 42, 56, 70, 84, 105, 126, and 147 days after emergence (DAE)). Our results showed that modern peanut cultivars presented nutrient accumulation around 30 to 40 days earlier than older cultivars, as well as increasing the uptake by K and Ca. IAC 505 absorbed higher amounts of macronutrients and resulted in greater dry matter production compared with IAC OL3 and IAC Runner 886. Our study demonstrated that the most appropriate time for plants to find greater availability of nutrients in the soil is 70 to 84 DAE, in addition to highlighting the need for updates on nutritional recommendations for higher yields of modern peanut cultivars.
ABSTRACT
Nitrogen use in agriculture directly impacts food security, global warming, and environmental degradation. Forage grasses intercropped with maize produce feed for animals and or mulch for no-till systems. Forage grasses may exude nitrification inhibitors. It was hypothesized that brachiaria intercropping increases N recycling and maize grain yield and reduces nitrous oxide (N2O) emissions from soil under maize cropping. A field experiment was set up in December 2016 to test three cropping system (maize monocropped, maize intercropped with Brachiaria brizantha or with B. humidicola) and two N rates (0 or 150 kg ha-1). The grasses were sown with maize, but B. humidicola did not germinate well in the first year. B. brizantha developed slowly during the maize cycle because of shading but expanded after maize was harvested. The experiment was repeated in 2017/2018 when B. humidicola was replanted. N2O and carbon dioxide (CO2) emissions, maize grain yield and N content were measured during the two seasons. After the first maize harvest, the above- and below-ground biomass, C and N content of B. brizantha grown during fall-winter, and the biological nitrification inhibition potential of B. brizantha were evaluated. Maize yield responded to N fertilization (5.1 vs. 9.8 t ha-1) but not to brachiaria intercropping. B. brizantha recycled approximately 140 kg N ha-1 and left 12 t dry matter ha-1 for the second maize crop. However, the 2017/18 maize yields were not affected by the N recycled by B. brizantha, whereas N2O emissions were higher in the plots with brachiaria, suggesting that part of the recycled N was released too early after desiccation. Brachiarias showed no evidence of causing nitrification inhibition. The strategy of intercropping brachiarias did not increase maize yield, although it added C and recycled N in the system.
ABSTRACT
Long-term supply of synthetic nitrogen (N) has the potential to affect the soil N processes. This study aimed to (i) establish N response curves to find the best balance between inputs and outputs of N over four ratoons; (ii) use 15N-labeled fertilizer to estimate the N recovery efficiency of fertilizer applied in the current season as affected by the N management in the previous three years. Nitrogen rates (control, 60, 120, and 180 kg ha-1 N) were applied annually in the same plots after the 1st, 2nd, 3rd, and 4th sugarcane cycles. Sugarcane yield, N uptake, and N balance were evaluated. In the final season, 100 kg ha-1 of 15N was also applied in the microplots to evaluate the effect of previous N fertilization on N derived from fertilizer (NDF) and N derived from soil (NDS). Sugarcane yields increased linearly with the N rates over the four sugarcane-cycles. The best balance between the input of N through fertilizer and N removal by stalks was 90 kg ha-1 N in both the 1st and 2nd ratoons, and 71 kg ha-1 N in both the 3rd and 4th ratoons. Long-term application of N reduced NDF from 41 to 30 kg ha-1 and increased NDS from 160 to 180 kg ha-1 N. A key finding is that long-term N fertilization has the potential to affect soil N processes by increasing the contribution of soil N and reducing the contribution of N from fertilizer.
ABSTRACT
Disturbances in soil can cause short-term soil changes, consequently changes in microbial community what may result in long-lasting ecological effects. Here, we evaluate how multiple pulse disturbances effect the dynamics and resilience of fungal community, and the co-occurrence of fungal and bacterial communities in a 389â¯days field experiment. We used soil under sugarcane cultivation as soil ecosystem model, and organic residue (vinasse - by-product of sugarcane ethanol production) combined or not with inorganic (organic residue applied 30â¯days before or together with mineral N fertilizer) amendments as disturbances. Application of organic residue alone as a single disturbance or 30â¯days prior to a second disturbance with mineral N resulted in similar changes in the fungal community. The simultaneous application of organic and mineral N as a single pulse disturbance had the greatest impact on the fungal community. Organic amendment increased the abundance of saprotrophs, fungal species capable of denitrification, and fungi described to have copiotrophic and oligotrophic lifestyles. Furthermore, the changes in the fungal community were not correlated with the changes in the bacterial community. The fungal community was neither resistant nor resilient to organic and inorganic disturbances over the one-year sampling period. Our findings provide insights on the immediate and delayed responses of the fungal community over one year to disturbance by organic and inorganic amendments.
Subject(s)
Mycobiome , Fertilizers/analysis , Fungi , Soil , Soil MicrobiologyABSTRACT
Sugarcane (Saccharum spp) crop has high social, economic and environmental importance for several regions throughout the world. However, the increasing demand for efficiency and optimization of agricultural resources generates uncertainties regarding high mineral fertilizer consumption. Thereby, organomineral fertilizers are to reduce the conventional sources consumption. Thus, this study was carried out to evaluate the agronomic and economic sugarcane performancies and the residual effect of P and K under mineral and organomineral fertilization. Growth and technological parameters, leaf and soil nutrients concentration in surface and subsurface layers were analyzed from sugarcane planting (plant cane) until the first ratoon. Agronomic and economic sugarcane efficiency were evaluated. At the first ratoon, resin-extractable P provided by mineral and organomineral fertilizers were, respectively, 15 and 11 mg kg-1 in the 0.0-0.2 m, and 28 and 31 mg kg-1 in 0.2-0.4 m layer. However, exchangeable K in the 0.0-0.2 m layer was 1.88 and 1.58 mmolc kg-1 for mineral and organomineral fertilizers, respectively. The yield gains over the control reached with mineral and organomineral fertilizers were, respectively, 10.99 and 17 Mg ha-1 at the lowest fertilizer rate; and 29.25 and 61.3 Mg ha-1 at the highest fertilizer rate. Agronomic and economic organomineral fertilizer efficiencies are more pronounced in plant cane. Summing two harvests, the organomineral is 7% more profitable than mineral fertilizer.
ABSTRACT
The use of nitrification inhibitors (NIs; dicyandiamide - DCD) is an alternative to reduce oxidation of ammonium (NH4+-N) to nitrate (NO3-N) in the soil, reducing NO3-N losses from fertilization practices. Based on the hypothesis that DCD reduces conversion of NH4+-N to NO3-N in tropical soils and inhibits ammonia oxidizing microorganisms (AOM) abundance, soils from the Piracicaba region, São Paulo, with different textures (sand, loam and clay) were incubated with ammonium sulphate (AS) and DCD. Contents of NH4+-N, NO3-N, soil pH, and AOM abundance were quantified periodically. Ammonium sulphate increased AOM abundance in all soils, but AS+DCD presented AOM abundances similar to the control. During 90 days of incubation, the effectiveness of DCD in reducing NO3-N production was 1.8, 86.4, and 145.6 mg kg1, while the effectiveness of DCD in reducing AOM abundance was 1.2, 3.0 and 2.3 × 103 g soil1 for sandy, loamy, and clayey soils, respectively. DCD effectiveness was greater in loamy and clayey soils due to the naturally low nitrification in sandy soils. Application of AS treated with DCD showed potential not only to reduce NO3-N production in loamy and clayey soils, but also to decrease the soil nitrification rate. Overall, DCD was effective in reducing AOM abundance and conversion of NH4+-N to NO3-N in loamy and clay soils evaluated here. The increase in clay content directly influences DCD effectiveness in reducing conversion of NH4+-N to NO3-N.(AU)
Subject(s)
Soil Chemistry , Soil Analysis , Nitrification , Fertilizers , Ammonium SulfateABSTRACT
The use of nitrification inhibitors (NIs; dicyandiamide - DCD) is an alternative to reduce oxidation of ammonium (NH4+-N) to nitrate (NO3-N) in the soil, reducing NO3-N losses from fertilization practices. Based on the hypothesis that DCD reduces conversion of NH4+-N to NO3-N in tropical soils and inhibits ammonia oxidizing microorganisms (AOM) abundance, soils from the Piracicaba region, São Paulo, with different textures (sand, loam and clay) were incubated with ammonium sulphate (AS) and DCD. Contents of NH4+-N, NO3-N, soil pH, and AOM abundance were quantified periodically. Ammonium sulphate increased AOM abundance in all soils, but AS+DCD presented AOM abundances similar to the control. During 90 days of incubation, the effectiveness of DCD in reducing NO3-N production was 1.8, 86.4, and 145.6 mg kg1, while the effectiveness of DCD in reducing AOM abundance was 1.2, 3.0 and 2.3 × 103 g soil1 for sandy, loamy, and clayey soils, respectively. DCD effectiveness was greater in loamy and clayey soils due to the naturally low nitrification in sandy soils. Application of AS treated with DCD showed potential not only to reduce NO3-N production in loamy and clayey soils, but also to decrease the soil nitrification rate. Overall, DCD was effective in reducing AOM abundance and conversion of NH4+-N to NO3-N in loamy and clay soils evaluated here. The increase in clay content directly influences DCD effectiveness in reducing conversion of NH4+-N to NO3-N.
Subject(s)
Soil Analysis , Fertilizers , Nitrification , Soil Chemistry , Ammonium SulfateABSTRACT
Urea is the most widely used nitrogen (N) fertilizer, with a projected increase in annual demand of 1.5% in the coming years. After its application to soil, urea undergoes hydrolysis via the urease enzyme, causing increases in the soil pH in the surrounding area of the granules and resulting in NH3 losses that average 16% of N applied worldwide and can reach 40% or more in hot and humid conditions. The use of urease inhibitors is an effective way to reduce NH3 losses. Several compounds act as urease inhibitors, but only N-(n-butyl) thiophosphoric triamide (NBPT) has been used worldwide, being the most successful in a market that has grown 16% per year in the past 10â¯years. Only in the past three years other compounds are being commercially launched. In comparison to urea, NBPT-treated urea reduces NH3 loss by around 53%. Yield gain by NBPT usage is of the order of 6.0% and varies from -0.8 to 10.2% depending on crop species. Nitrification inhibitors usually increase NH3 volatilization and mixing them with urease inhibitors partially offsets the benefits of the latter in reducing NH3 loss. The efficacy of NBPT to reduce NH3 loss is well documented, but there is a need for further improvement to increase the period of inhibition and the shelf life of NBPT-treated urea.
ABSTRACT
Sugarcane is a widespread bioenergy crop in tropical regions, and the growing global demand for renewable energy in recent years has led to a dramatic expansion and intensification of sugarcane agriculture in Brazil. Currently, extensive areas of low-intensity pasture are being converted to sugarcane, while management in the remaining pasture is becoming more intensive, i.e., includes tilling and fertilizer use. In this study, we assessed how such changes in land use and management practices alter emissions of greenhouse gases (GHG) such as CO2, N2O and CH4 by measuring in situ fluxes for one year after conversion from low-intensity pasture to conventional sugarcane agriculture and management-intensive pasture. Results show that CO2 and N2O fluxes increased significantly in pasture and sugarcane with tillage, fertilizer use, or both combined. Emissions were highly variable for all GHGs, yet, cumulatively, it was clear that annual emissions in CO2-equivalent (CO2-eq) were higher in management-intense pasture and sugarcane than in unmanaged pasture. Surprisingly, tilled pasture with fertilizer (management-intensive pasture) resulted in higher CO2-eq emissions than conventional sugarcane. We concluded that intensification of pasture management and the conversion of pasture to sugarcane can increase the emission factor (EF) estimated for sugarcane produced in Brazil. The role of management practices and environmental conditions and the potential for reducing emissions are discussed.
Subject(s)
Agriculture , Greenhouse Gases , Saccharum , Animals , Brazil , Carbon Dioxide , Cattle , Gases , Greenhouse Effect , Methane , Nitrous OxideABSTRACT
Retaining the mineral N in the form of NH4+ in the soil for a lengthy period is desirable for reducing losses. Furthermore, there is evidence that sugarcane prefers NH4+-N in place of NO3-N. This study aimed firstly, to evaluate the potential of root extracts of Bracchiaria humidicola andSaccharum spontaneum, in contrast with the DCD (Dicyandiamide) inhibitor, to increase absorption of N by plants fertilized with ammonium sulfate, and secondly, to quantify the emission of N2O fluxes with the use of this inhibitor. The experiment was developed in a glasshouse in an entirely randomized design where four treatments were applied: AS) ammonium sulfate (control); AS+DCD) ammonium sulfate associated with dicyandiamide; AS+BCH) ammonium sulfate associated with root extracts ofBrachiaria humidicola; and AS+SCS) ammonium sulfate associated with root extracts of Saccharum spontaneum. Differences were observed in biomass production in plants 45 and 60 days after fertilization (DAF) and 15 and 60 days in biomass accumulation of roots. The application of AS associated with DCD synthetic inhibitor kept NO3-N values low throughout the evaluation period, while in other treatments the concentration increased right up to the second evaluation 15 DAF. Sugarcane plants did not benefit from the increased presence of ammoniacal N promoted by DCD. The use of DCD reduced the average flux of N2O during the evaluation period compared to plants receiving AS treatments only, which was not observed when root extracts of B. humidicola and S. spontaneum were used.(AU)
Subject(s)
Poaceae/toxicity , Saccharum/adverse effects , Saccharum/growth & development , Nitrification , Nitrous Oxide/analysisABSTRACT
Retaining the mineral N in the form of NH4+ in the soil for a lengthy period is desirable for reducing losses. Furthermore, there is evidence that sugarcane prefers NH4+-N in place of NO3-N. This study aimed firstly, to evaluate the potential of root extracts of Bracchiaria humidicola andSaccharum spontaneum, in contrast with the DCD (Dicyandiamide) inhibitor, to increase absorption of N by plants fertilized with ammonium sulfate, and secondly, to quantify the emission of N2O fluxes with the use of this inhibitor. The experiment was developed in a glasshouse in an entirely randomized design where four treatments were applied: AS) ammonium sulfate (control); AS+DCD) ammonium sulfate associated with dicyandiamide; AS+BCH) ammonium sulfate associated with root extracts ofBrachiaria humidicola; and AS+SCS) ammonium sulfate associated with root extracts of Saccharum spontaneum. Differences were observed in biomass production in plants 45 and 60 days after fertilization (DAF) and 15 and 60 days in biomass accumulation of roots. The application of AS associated with DCD synthetic inhibitor kept NO3-N values low throughout the evaluation period, while in other treatments the concentration increased right up to the second evaluation 15 DAF. Sugarcane plants did not benefit from the increased presence of ammoniacal N promoted by DCD. The use of DCD reduced the average flux of N2O during the evaluation period compared to plants receiving AS treatments only, which was not observed when root extracts of B. humidicola and S. spontaneum were used.
Subject(s)
Nitrification , Poaceae/toxicity , Saccharum/growth & development , Saccharum/adverse effects , Nitrous Oxide/analysisABSTRACT
The area under mechanized sugarcane (Saccharum spp.) harvesting is expanding in Brazil, increasing the return of trash to the soil. The main questions regarding this management are: (i) after adopting unburned mechanical harvesting, how long will it take to observe decreases in fertilizer requirements, (ii) what will be the magnitude of this decrease and, (iii) the impact in the short run of removing trash for energy purposes in the nutrient cycling? This study aimed to build an N prediction model for long term assessment of the contribution of sugarcane crop residues to sugarcane nutrition and to evaluate the cycling of other nutrients derived from crop residues. Keeping crop residues over the soil will increase soil N stock and N recovery by sugarcane, reaching equilibrium after 40 years with recovery of approximately 40 kg ha-1 year-1 of N. Removing trash for energy production will decrease the potential reduction in N fertilizer requirement. Of the total nutrients in the trash, 75 % of the K2O (81 kg ha-1 year-1) and 50 % of the N (31 kg ha-1 year-1) are in the tops, indicating the importance of maintaining tops in the soil to sustain soil fertility. Because the input data employed in the simulations are representative of the conditions in Southeast Brazil, these results might not be definitive for situations not represented in the experiments used in the study, but the model produced is useful to forecast changes that occur in the soil under different trash management.
ABSTRACT
The maintenance of sugarcane (Saccharum spp.) straw on a soil surface increases the soil carbon (C) stocks, but at lower rates than expected. This fact is probably associated with the soil management adopted during sugarcane replanting. This study aimed to assess the impact on soil C stocks and the humification index of soil organic matter (SOM) of adopting no-tillage (NT) and conventional tillage (CT) for sugarcane replanting. A greater C content and stock was observed in the NT area, but only in the 0-5 cm soil layer (p 0.05). Greater soil C stock (0-60 cm) was found in soil under NT, when compared to CT and the baseline. While C stock of 116 Mg ha-1 was found in the baseline area, in areas under CT and NT systems the values ranged from 120 to 127 Mg ha-1. Carbon retention rates of 0.67 and 1.63 Mg C ha-1 year-1 were obtained in areas under CT and NT, respectively. Laser-Induced Fluorescence Spectroscopy showed that CT makes the soil surface (0-20 cm) more homogeneous than the NT system due to the effect of soil disturbance, and that the SOM humification index (H LIF) is larger in CT compared to NT conditions. In contrast, NT had a gradient of increasing H LIF, showing that the entry of labile organic material such as straw is also responsible for the accumulation of C in this system. The maintenance of straw on the soil surface and the adoption of NT during sugarcane planting are strategies that can increase soil C sequestration in the Brazilian sugarcane sector.
ABSTRACT
The maintenance of sugarcane (Saccharum spp.) straw on a soil surface increases the soil carbon (C) stocks, but at lower rates than expected. This fact is probably associated with the soil management adopted during sugarcane replanting. This study aimed to assess the impact on soil C stocks and the humification index of soil organic matter (SOM) of adopting no-tillage (NT) and conventional tillage (CT) for sugarcane replanting. A greater C content and stock was observed in the NT area, but only in the 0-5 cm soil layer (p 0.05). Greater soil C stock (0-60 cm) was found in soil under NT, when compared to CT and the baseline. While C stock of 116 Mg ha-1 was found in the baseline area, in areas under CT and NT systems the values ranged from 120 to 127 Mg ha-1. Carbon retention rates of 0.67 and 1.63 Mg C ha-1 year-1 were obtained in areas under CT and NT, respectively. Laser-Induced Fluorescence Spectroscopy showed that CT makes the soil surface (0-20 cm) more homogeneous than the NT system due to the effect of soil disturbance, and that the SOM humification index (H LIF) is larger in CT compared to NT conditions. In contrast, NT had a gradient of increasing H LIF, showing that the entry of labile organic material such as straw is also responsible for the accumulation of C in this system. The maintenance of straw on the soil surface and the adoption of NT during sugarcane planting are strategies that can increase soil C sequestration in the Brazilian sugarcane sector.
ABSTRACT
The area under mechanized sugarcane (Saccharum spp.) harvesting is expanding in Brazil, increasing the return of trash to the soil. The main questions regarding this management are: (i) after adopting unburned mechanical harvesting, how long will it take to observe decreases in fertilizer requirements, (ii) what will be the magnitude of this decrease and, (iii) the impact in the short run of removing trash for energy purposes in the nutrient cycling? This study aimed to build an N prediction model for long term assessment of the contribution of sugarcane crop residues to sugarcane nutrition and to evaluate the cycling of other nutrients derived from crop residues. Keeping crop residues over the soil will increase soil N stock and N recovery by sugarcane, reaching equilibrium after 40 years with recovery of approximately 40 kg ha-1 year-1 of N. Removing trash for energy production will decrease the potential reduction in N fertilizer requirement. Of the total nutrients in the trash, 75 % of the K2O (81 kg ha-1 year-1) and 50 % of the N (31 kg ha-1 year-1) are in the tops, indicating the importance of maintaining tops in the soil to sustain soil fertility. Because the input data employed in the simulations are representative of the conditions in Southeast Brazil, these results might not be definitive for situations not represented in the experiments used in the study, but the model produced is useful to forecast changes that occur in the soil under different trash management.